Driver Response to Differing Urban Work-Zone Configurations.


Morgan, J.F., Duley, A.R., & Hancock, P.A. (2010). Driver response to differing urban work-zone configurations. Accident Analysis and Prevention, 42, 978-985.

This study reports the results of a simulator-based assessment of driver response to two different urban highway work zone configurations. One configuration represented an existing design which was contrasted with a second configuration that presented a reduced taper length prototype work zone design. Twenty-one drivers navigated the two different work zones in two different conditions, one with and one without a lead vehicle; in this case a bus. Measures of driver speed, braking, travel path, and collision frequency were recorded. Drivers navigated significantly closer to the boundary of the work area in the reduced taper length design. This proximity effect was moderated by the significant interaction between lead vehicle and taper length and such interactive effects were also observed for driver speed at the end of the work zone and the number of collisions observed within the work zone itself. These results suggest that reduced taper length poses an increase in risk to both drivers and work zone personnel, primarily when driver anticipation is reduced by foreshortened viewing distances. Increase in such risk is to a degree offset by the reduction of overall exposure to the work zone that a foreshortened taper creates. The benefits and limitations to a simulation-based approach to the assessment and prediction of driver behavior in different work zone configurations are also discussed.

Download Publication

Your web browser doesn’t have a PDF plugin. Please download publication from the link above