The Distraction Effects of Phone Use During a Crucial Driving Maneuver

Publication

Citation:
Hancock, P.A., Lesch, M., & Simmons, L. (2003). The distraction effects of phone use during a crucial driving maneuver. Accident Analysis and Prevention35(4), 501-514.

Abstract:
Forty-two licensed drivers were tested in an experiment that required them to respond to an in-vehicle phone at the same time that they were faced with making a crucial stopping decision. Using test track facilities, we also examined the influence of driver gender and driver age on these dual-task response capacities. Each driver was given task practice and then performed a first block of 24 trials, where one trial represented one circuit of the test track. Half of the trials were control conditions in which neither the stop-light was activated nor was the in-vehicle phone triggered. Four trials required only stop-light response and a further four, phone response only. The remaining four trials required the driver to complete each task simultaneously. The order of presentation of specific trials was randomized and the whole sequence was repeated in a second block giving 48 trials per driver. In-vehicle phone response also contained an embedded memory task that was evaluated at the end of each trial circuit. Results confirmed our previous observation that in the dual-task condition there was a slower response to the light change. To compensate for this slowed response, drivers subsequently brake more intensely. Most importantly, we recorded a critical 15% increase in non-response to the stop-light in the presence of the phone distraction task which equates with increased stop-light violations on the open road. These response patterns varied by driver age and driver gender. In particular, age had a large effect on task components that required speed of response to multiple, simultaneous demands. Since driving represents a highly complex and interactive environment, it is not possible to specify a simplistic relationship between these distraction effects and outcome crash patterns. However, we can conclude that such in-vehicle technologies erode performance safety margin and distract drivers from their critical primary task of vehicle control. As such it can be anticipated that a causal relation exists to collision events. This is a crucial concern for all in-vehicle device designers and for the many safety researchers and professionals seeking to reduce the adverse impacts of vehicle collisions.

Download Publication

Your web browser doesn’t have a PDF plugin. Please download publication from the link above