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Fuzzy Signal Detection Theory (FSDT) combines traditional Signal Detection Theory (SDT) with Fuzzy
Set Theory to generalize signal detection analysis beyond the traditional categorical decision-making
model. This advance upon SDT promises to improve measurement of performance in domains in which
stimuli do not fall into discrete, mutually exclusive categories; a situation which characterizes many
detection problems in real-world operational contexts. FSDT allows for events to simultaneously be in
more than one state category (e.g., both signal and nonsignal). The present study derived FSDT Receiver
Operating Characteristic (ROC) functions to test whether application of FSDT meets the Gaussian and
equal variance assumptions of traditional SDT and, therefore, whether the standard representation of the
SDT decision space can be extended to the broader case of FSDT. Results supported the contention that
FSDT does meet these traditional SDT assumptions, and further, that it yields higher sensitivity scores
than traditional SDT when the category membership of events is ambiguous. ROC analyses indicate that
use of traditional SDT formulas with fuzzy hit and false alarm rates is thus justified. The implications of
this advance to both theoretical and practical domains are adumbrated.
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For more than half a century Signal Detection Theory (SDT;
Green & Swets, 1966/1988; Swets, 1996; Tanner & Birdsall, 1958;
Tanner & Swets, 1954) has provided perhaps the most useful
analytical tool for evaluating human and machine performance in
both simple and complex detection domains. As such, it has served
simultaneously as one of the most important measurement tools
and influential theories in all of behavioral research (Dember,
1998; Estes, 2002). The theory permits the independent evaluation
of perceptual sensitivity and response bias (see Macmillan &
Creelman, 2005). Perceptual sensitivity (often denoted by the term
d=) depends upon the perceptual ability of the observer to detect a
signal or target or to discriminate signal from nonsignal events.
Response bias (often denoted by the term �) represents the oper-
ator’s decision criterion as to their propensity to say yes or no
given the evidence to be evaluated.

Although SDT has been a critical achievement along our path to
understanding decision-making performance, even preeminent the-
ories have their limitations and SDT is no exception. In SDT the
state of the world is forced into two distinct and mutually exclusive
categories (i.e., signal vs. nonsignal; see Figure 1). However, this
absolute division may not always represent an accurate depiction
of the true state of the world. In many instances, events are
sufficiently complex and/or perceptually ambiguous that they pos-
sess ongoing properties of both signal and nonsignal to varying

degrees. It is important to note that this complexity does not result
from low versus high signal strength (i.e., changes in the magni-
tude of the evidence variable) but rather a change in the nature of
the evidence variable itself. That is, until absolute categorical
identification has occurred (often after the fact), the signal itself
may retain various nonsignal properties and vice versa. Indeed, it
is such categorical (and often multidimensional) blending that
induces at least some of the inherent stimulus-based uncertainty in
decision-making in the first place. This circumstance is especially
true of real-world operational settings.

Often, in such operational environments, characteristics of “tar-
gets” (e.g., dangerous items in luggage, markers for improvised
explosive devices—IEDs, etc.) and “nontargets” (luggage with no
prohibited or dangerous items, the absence of an IED) do not
clearly meet the simple classification scheme of traditional SDT or
the identification criteria prescribed by trainers or designers in
their respective domains. For instance, the classical detection
model assumes that items in the environment are either targets
(e.g., weapons in a bag, IEDs) or nontargets. Items that are
nontargets might have some degree of target value (e.g., sharp-
edged, oblong metal object: such as a letter opener in baggage,
changes in the environment such as new piles of trash not seen
before or disturbed earth that can indicate the presence of an IED),
but the observer has to force the observed object (or groups of
objects) into just one of the two categories. Forcing ambiguous
stimuli into two discrete categories can result in loss of threat
information in real-world detection and decision-making. Such
stimuli, which cannot be easily categorized into one group of only
two predetermined object sets, often predominate in operational
settings. Traditional signal detection theory is limited in that, in
general, it is constrained to impose a discrete division on these
natural continua of signal definition.
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Addressing such uncertainty, therefore, requires modification to
the traditional “crisp” representations in SDT to allow for degrees
of membership in the signal and nonsignal categories. Hancock,
Masalonis, and Parasuraman (2000; see also Parasuraman, Masa-
lonis, & Hancock, 2000) have articulated this more general case by
combining SDT with elements of Fuzzy Set Theory (Zadeh, 1965).
Here, category membership is not mutually exclusive and a stim-
ulus event can, therefore, be simultaneously assigned to more than
one category. Thus, in Fuzzy Signal Detection Theory (FSDT) a
given stimulus, or more formally, a stimulus selected at random
from a distribution of possible stimulus events, may be simulta-
neously categorized as both a target and a nontarget depending on
the relative degrees of signal-like properties versus nonsignal
properties that comprise the stimulus. For instance, a convenient
range for a stimulus dimension is one in which the membership
value of the stimulus varies from 0 (100% membership in the
nonsignal category) to 1 (100% membership in the signal cate-
gory). These end points correspond to the categories of traditional
SDT. However, in FSDT values between 0 and 1 reflect different
degrees of membership in the two categories. A signal value of .5
represents maximal uncertainty in the category membership status
of the stimulus itself because a stimulus with a signal value of .5
has properties of both a nonsignal and a signal to an equal degree.
Implicit in this model is the assumption that signal uncertainty
exists not only within the observer (a major insight provided by
traditional SDT) but also in the state-of-the-world itself (a major
supposition of the present work). Both the SDT and FSDT models
capture the uncertainty in the variation in magnitude of the evi-
dence variable. However, through fuzzification, FSDT also cap-
tures the uncertainty inherent in the categorization of stimulus
events and the appropriate responses to them.

In defining the state-of-the-world, it is important to note that the
categorization (whether fuzzy or crisp) depends on the properties
of an object or event that make it a signal or a nonsignal. For
instance, in the context of IED detection, small piles of trash or
debris have been used by insurgents to camouflage the explosives.
The trash is, therefore, a feature of the category “signal.” There
may not be an IED present (from a FSDT perspective, this simply
means that s � 1), but one of the properties of such a threat is
present (indicating that s � 0). The state of the world is fuzzy in
this instance because the stimulus to be evaluated has a nonzero
degree of membership in the category “signal to be detected”

(“signalness”). FSDT does not purport that signals to be detected
may not emerge completely over successive observations (i.e.,
attain a state in which s � 1), but only that there are instances in
which some of the properties that define an event as a signal are
present, and that the degree to which an event has these properties
can be quantified rather than be (implicitly) treated as categorically
equivalent to stimuli that possess no signal properties (s � 0).

The Nature of Uncertainty in Signal Detection

One of the successful aspects of traditional SDT is its capacity
for quantification of uncertainty in the evidence variable and the
response of the observer to that uncertainty. There is also prece-
dent in research on the traditional model for examining uncertainty
in the signal itself. A case in which the signal is defined without
ambiguity (e.g., how a positive test result is defined—a signal on
an x-ray may be a spot with well-defined characteristic of size,
shape, density, etc.) is referred to as a “signal known exactly”
(SKE; Tanner & Birdsall, 1958). It is the SKE circumstance that is
described in most textbook treatments of SDT. A case in which the
magnitude of the evidence variable that comprises a signal is
variable and, thus, is itself uncertain is referred to as a “signal
known statistically” (SKS; e.g., a signal is a “spot” on an x-ray that
may vary randomly from case to case in the magnitude of its size,
shape, density, etc., but nevertheless belongs in the category “sig-
nal”). An SKS occurs when, in addition to shifting the mean of the
noise distribution, addition of a signal also introduces random
variability in the signal itself, which can increase the variability of
the signal-noise distribution (Swets, 1996). However, in FSDT the
uncertainty derives not from random variation in signal magnitude
(as in the crisp SKS case), but from the categorical and nonran-
dom definition of the signal itself.

Mapping Functions

FSDT can be applied to all circumstances in which the state-
of-the-world is fuzzy. For instance, in their formal description of
the model, Parasuraman, Masalonis, and Hancock (2000) showed
how conflict between commercial aircraft (in terms of relative
distance in nautical miles) can map to fuzzy set membership to
provide a more accurate definition of a “signal to be detected” than
the traditional crisp definition (in which a signal is defined as a
distance of 5 nautical miles or less; see Figure 2). As illustrated,
the fuzzy mapping function permits degrees of membership in the
set “signal” (the ordinate axis in the figure), permitting distances
outside the traditional definition of a signal (e.g., 6 nautical miles)
to have a high level of signal value. In contrast, in the traditional
approach, also shown in the figure, any value above 5 would be
considered a nonsignal (e.g., 6 miles would be considered equiv-
alent to any other number of miles of separation greater than 5).
The mapping function is the most crucial step in application of
FSDT because it specifies the correspondence between a physical
variable and its membership in the set “signal.” The mapping
function defines the state-of-the-world for FSDT analyses.

A mapping function is also generated for the set “response,” but
this can be operationalized using confidence ratings typically used
in traditional SDT (Hancock, Masalonis, & Parasuraman 2000;
Parasuraman et al., 2000). However, use of confidence ratings in
SDT constitutes loss of information because the state of the world

Figure 1. 2 � 2 matrix of outcomes to stimulus events for traditional
signal detection theory. Note: s � membership in the set (category)
“signal.”
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is constrained to be organized into mutually exclusive categories,
and because the confidence ratings are treated analytically as
different criterion levels (i.e., crisp response categories), not dif-
ferent levels of judgment regarding the “signalness” of an event. In
other words, the traditional analytic approach to the use of confi-
dence intervals retains the crisp categorical response sets and may
not necessarily reflect the confidence (fuzziness) of the response
itself.

FSDT Procedures

The model and procedures for FSDT have been described in
detail by Parasuraman et al. (2000) and Hancock et al. (2000) and,
thus, are only briefly summarized here. Based on the fuzzy map-
ping function (e.g., Figure 2), the degree of membership in the set
“signal” (s) is assigned for each stimulus presented, and the degree
of membership in the set “yes response” (r) is assigned for each
response by the observer (for examples see Table 1). Fuzzy mem-
bership in the sets hit (H), miss (M), false alarm (FA), and correct
rejection (CR) are then assigned using the mixed implication
functions shown in Equations 1–4. Parasuraman et al. (2000)

reported that these functions were compared with others, but were
the only ones found to not be “invalid for one reason or another”
(p. 644). The minimum functions reflect the degree of overlap of
the signal and response sets. The maximum functions reflect the
degree of over- or underresponding for membership in the sets
“false alarm” or “miss,” respectively. Note that for computation of
sensitivity and response bias only the implication functions for hits
and false alarms are necessary.

H � min �s, r� (1)

M � max �s-r, 0� (2)

FA � max �r-s, 0� (3)

CR � min �1-s, 1-r� (4)

It is important to emphasize that Equations 1–4 do not produce
proportions, but instead indicate fuzzy membership in the respec-
tive sets H, M, FA and CR (e.g., see Table 2). The proportions of
correct detections, missed signals, false alarms, and correct rejec-
tions are computed by summing the fuzzy membership values over
trials and dividing by the sum across trials of the fuzzy member-
ship values for the set “signal.” These computational procedures
are shown in Equations 5–8.

p�H� � � �Hi� ⁄ � �si� for Trials i � 1 to N (5)

p�M� � � �Mi� ⁄ � �si� for Trials i � 1 to N (6)

p�FA� � � �FAi� ⁄ � �1 � si� for Trials i � 1 to N (7)

p�CR� � � �CRi� ⁄ � �1 � si� for Trials i � 1 to N (8)

Note that in their original presentation, Parasuraman et al.
(2000) referred to these as “rates” (e.g., hit rate; HR, etc.). As
Equations 5–8 yield proportions, we have clarified this meaning
by replacing the original notations accordingly. This substitution
should also serve to underscore that Equations 5–8 are propor-
tions, but Equations 1–4 denote degrees of categorical member-
ship.

Computational example. To illustrate this procedure, sup-
pose that seven stimuli and seven responses are mapped to s and r,
respectively, as shown in Table 1. In Table 2 are sample data for
five stimulus presentations (from Participant 1 of Experiment 1 of
the present work). Membership in the sets “hit,” “miss,” “false
alarm,” and “correct rejection” are determined using the mixed
implication functions in Equations 1–4 and reproduced in Table 2.

Table 1
Membership in the Sets “Signal” (s) and “Response” (r) for Each of Seven Categories of
Stimulus and Response

Stimulus category s Response category r

1 0 1 0
2 0.1667 2 0.1667
3 0.3333 3 0.3333
4 0.5 4 0.5
5 0.6667 5 0.6667
6 0.8333 6 0.8333
7 1 7 1

Figure 2. Mapping function showing the degree of membership in the set
signal (s) as a function of a physical variable (a). From Parasuraman,
Masalonis, and Hancock (2000).
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Computation of the corresponding proportions is accomplished by
summing the membership values over trials and also determining
the sum of s and 1-s over those trials using the formulae in
Equations 5–8. Thus,

p�H� � � �Hi� ⁄ � �si� � �0.1667 � 0.6667 � 0.5 � 0.1667

� 0.3333� ⁄ �0.1667 � 0.8333 � 1 � 0.16667 � 0.6667�
p�H� � 0.65

p�M� � � �Mi� ⁄ � �si� � �0 � 0.1666 � 0.5 � 0

� 0.3334� ⁄ �0.1667 � 0.8333 � 1 � 0.16667 � 0.6667�
p�M� � 0.35

p�FA� � � �FAi� ⁄ � �1-si� � �0.1666 � 0 � 0 � 0.16666

� 0� ⁄ ��1 � 0.1667� � �1 � 0.8333� � �1 � 1�
� �1 � 0.1667� � �1 � 0.6667��

p�FA� � 0.15

p�CR� � � �CRi� ⁄ � �1-si� � �0.1667 � 0.1667 � 0 � 0.1667

� 0.3333� ⁄ ��1 � 0.1667� � �1 � 0.8333� � �1 � 1�
� �1 � 0.1667� � �1 � 0.6667��

p�CR� � 0.85

Application of SDT Procedures to Fuzzy Hit and False
Alarm Proportions

In their original exposition, Parasuraman et al. (2000) argued
that the established SDT procedures for computing sensitivity and
response bias could be applied to the fuzzy hit and false alarm
rates. This, they argued, is because “the fuzziness of the signal has
already been captured in the definition of s and r” (p. 649). That
is, the fuzzy hit and false alarm rates computed from FSDT
procedures can be treated computationally as equivalent to the
corresponding crisp rates.

However, we now propose that this equivalence may not be
justified. Computation of sensitivity and bias rests on statistical
assumptions regarding the decision space underlying the data.
These assumptions may be briefly summarized as (a) noise is
always present in any detection system, and it may be represented
as a normal distribution; (b) signals are always embedded in
noise, and the presence of a signal shifts the distribution (i.e.,
addition of a signal to the noise increases the magnitude of the

evidence variable) but does not change its form (i.e., the variance
of the noise distribution is equal to that of the signal � noise
distribution), so that the distance in standard deviation units be-
tween the means of the noise and signal � noise distributions
constitutes perceptual sensitivity (d=); (c) the observer establishes
a criterion for responding affirmatively regarding the presence of
a signal, and the placement of this criterion (response bias) is
independent of the distance between the means of the two distri-
butions (sensitivity). These assumptions manifest in the decision
space shown in Figure 3.

There is an implicit assumption in FSDT that the decision
space underlying FSDT data is identical to that of SDT, in spite
of the fact that the state-of-the-world is explicitly assumed to be
different. We can assert that it certainly may be the case that the
assumptions underlying SDT, and represented in the decision
space, also apply to FSDT, but crucially, this proposition needs
to be empirically evaluated. Crisp SDT data are derived differ-
ently than FSDT data and these computational differences may
potentially cause FSDT methods to fail to accurately represent
the decision space shown in Figure 3. That is, it is possible that
fuzzy hit and false alarm rates may be represented best by a
decision space that differs from that shown in Figure 3. In crisp
SDT each presentation of an event (a “trial”) consists of either
a signal or a nonsignal, and these categories are mutually
exclusive. The computation of hit and false alarm rates results
from repetitions of such presentation, which is necessary be-
cause SDT is a statistical model. FSDT is also a statistical
model (as it is an extension of traditional SDT), but responses
to mutually exclusive events are not summated, nor is the sum
divided by the total number of signals or nonsignals presented.
Rather, it is the sum (over trials) of the degree of membership
in the category “hit” or “false alarm,” divided by the degree of
membership in the categories signal and nonsignal summed
over the number of presentations, respectively (see Equations 5
and 7). It is not necessarily the case that the fuzzy signal and
noise distributions are identical in form to those of crisp signal
and noise distributions. However, if they are, then the recom-
mendation of Parasuraman et al. (2000) regarding the use of
standard SDT formulae would be warranted. If FSDT proce-
dures produce results that do not reflect the underlying (as-
sumed) decision space, then alternative measures to d= and �,
which are based on these assumptions, should be developed.
Fortunately, traditional SDT provides a methodology for eval-
uating the statistical assumptions of the model: Receiver Oper-
ating Characteristics (ROC; sometimes referred to as “Relative”
Operating Characteristics; see Swets, 1973, 1996).

Table 2
Example Computation of Fuzzy Outcome Measures

Trial s r H � min(s,r) M � max(s-r,0) FA � max(r-s,0) CR � min(1-s,1-r)

1 0.1667 0.3333 0.1667 0 0.1666 0.6667
2 0.8333 0.6667 0.6667 0.1666 0 0.1667
3 1 0.5 0.5 0.5 0 0
4 0.1667 0.3333 0.1667 0 0.1666 0.6667
5 0.6667 0.3333 0.3333 0.3334 0 0.3333
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ROC Analysis

ROC analysis provides a methodology for determining the be-
havior of diagnostic systems (Swets, 1996; Swets & Pickett, 1982).
Pairs of hit and false alarm rates are obtained at different levels of
response criterion, either through a manipulation of instructions
(e.g., a payoff matrix), of signal probability, or the use of confi-
dence ratings (for more detailed descriptions of these methods, see
Green & Swets, 1966/1988; Macmillan & Creelman, 2005). These
data points comprise the basis for estimating the change in correct
detections as a function of the false alarm rate. When the hit and
false alarm rates are converted to z-score form, a good fit of
the resulting function to a linear model indicates that the data are
consistent with normally distributed noise and signal � noise
distributions. If the slope of the function is one, the equal variance
assumption is considered to be tenable. Finally, the statistical
independence of sensitivity and response bias is indicated by
manipulation of task difficulty resulting in parallel lines in the
z-score form of the ROC. Cases in which the equal variance
assumption is tenable also provide evidence for the independence
of sensitivity and response bias. Independence can obtain when
the equal variance assumption is violated, but in such cases the
nonunit slopes of the two functions must be statistically equivalent
to one another. Nevertheless, if the slopes are different from unity,
then use of d= is inadvisable (Macmillan & Creelman, 2005; Swets,
1996).

Utility of fuzzy ROC analysis. Although a crucial test for
FSDT is whether it is an improvement over traditional SDT
methods because of the fuzzification of stimulus and response
categories, such an evaluation depends on the validity of the FSDT
procedures themselves. Thus, the key questions for FSDT are both
whether and how the incorporation of fuzzy logic into the deriva-
tion of hit and false alarm rates influences whether such data
support the assertion that the assumptions of traditional SDT

extend to FSDT. That is, determination of whether the Gaussian
and equal variance assumptions of traditional SDT extend to FSDT
would provide evidence regarding the nature of the underlying
decision space for the latter, which has implications for the com-
putations of fuzzy sensitivity and fuzzy response bias. The reason
that testing SDT assumptions is important is that if the application
of FSDT results in ROC functions consistent with the model
shown in Figure 3, it implies that (a) there is a common form of
distributions in the decision spaces of FSDT and SDT; and (b) the
use of standard formulae, which are based on assumptions regard-
ing the decision space illustrated in the figure, are acceptable for
fuzzy hit and false alarm rates. That is, if the assumptions of
traditional SDT are also met by FSDT, then the standard formulae
may be used for computing FSDT indices.

Evidence for FSDT

Using Monte Carlo methods, Szalma and O’Connell (2011)
generated simulated SDT data and analyzed these data using both
traditional and fuzzy methods. They applied the example mapping
function for aircraft separation described in Parasuraman et al.
(2000). They reported that when data are generated that conform to
the statistical assumptions of SDT, applying FSDT methods re-
sulted in ROC function that reflected this underlying structure. In
other words, application of FSDT procedures yielded functions
that accurately reflected the (known) underlying decision space. A
purpose for the present work was to determine whether FSDT
reflects the same underlying decision space using human observers
engaged in a perceptual decision-making task.

Empirical Tests of FSDT

The true test for any theory lies in how well it describes
empirical data and to what degree it differs from, improves on, or

Figure 3. Illustration of the decision space assumed by traditional signal detection theory.
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replaces existing theory. Initial investigations comparing FSDT
and traditional SDT were reported by Masalonis and Parasuraman
(2003), who used an air traffic control task and assigned fuzzy
membership values to stimulus and response sets. They reported
that the fuzzy false alarm rate was lower than the crisp false alarm
rate computed from the same data. However, at that time Masa-
lonis and Parasuraman (2003) were constrained to use data from
previous experiments that were somewhat amenable to fuzzy SDT
analysis but that were not designed to explicitly test this new
theory. In addition, they could not evaluate the decision space for
FSDT because they could not construct fuzzy ROC functions.
What is therefore needed are studies which are explicitly designed
to evaluate FSDT. The experiments reported here represent one of
the few purpose-specific, empirical tests of FSDT using a percep-
tual discrimination task (but see Murphy, Szalma, & Hancock,
2004). The purpose for the ROC analyses was to elucidate the
structure of the decision space underlying FSDT and to compare it
with the decision space of the traditional SDT model applied to the
same data but with crisp rather than fuzzy categorization.

We hypothesized that if application of standard formulas for sen-
sitivity and bias to fuzzy hit and false alarm rates is valid, then
applying common procedures to a FSDT task using the ROC para-
digm should yield linear functions (in z-score form) of unit slope. In
addition, variations in task difficulty should result in parallel functions
(equivalent slopes) in which the line corresponding to lower sensitiv-
ity (a more difficult discrimination task) should be lower (i.e., closer
to the origin) than the line for an easier version of a task.

The first experiment in the present series was designed to
explore this form of fuzzy ROC space and evaluate the SDT
assumptions at two levels of discrimination difficulty. These latter
levels were operationalized as the magnitude of the differences
between stimulus categories of a temporal discrimination task.
This experiment represents a replication and extension of an earlier
study by Murphy, Szalma, and Hancock (2004) who employed a
temporal discrimination task in which a 200 ms stimulus was
defined as a nonsignal (i.e., s � 0), and six durations, in increments
of either 20 ms or 80 ms, were defined as increasing degrees of
signal membership (“signalness”). The two increment intervals (�)
comprised a manipulation of task difficulty. Murphy et al. (2004)
reported that for a stimulus magnitude interval of � � 20 ms
(designated the more difficult condition) both traditional and fuzzy
SDT analyses indicated that the equal variance assumption was
met, and for both difficulty conditions the data yielded ROC
functions consistent with the assumption of Gaussian distributions.
In addition, the FSDT analysis generally resulted in higher sensi-
tivity estimates than traditional SDT analyses.

Murphy et al. (2004) interpreted their results in terms of the
differences in categorization in the two analytic methods. In SDT,
a missed signal or a false alarm is ubiquitously an all-or-none
event. In contrast, in FSDT partially correct detections or rejec-
tions are possible. For instance, if on a given trial the observer’s
response belongs to the category “false alarm” to a degree of 0.7
and to the category “hit” 0.3, then in a crisp analysis (in which the
data are forced into the 2 � 2 matrix shown in Figure 1) the
response to this trial would be considered a false alarm. In FSDT,
however, it is considered to be both a false alarm and a correct
detection to differing degrees. Murphy et al. (2004) concluded that
in many instances (i.e., those that do not naturally conform to the

2 � 2 matrix representation shown in Figure 1) traditional SDT
underestimates the sensitivity of observers.

Murphy et al. (2004) reported that a discrimination difficulty ma-
nipulation resulted in an inconsistent pattern of results across partic-
ipants and analyses (SDT vs. FSDT). As they noted, this result may
have been due to the intrinsic covariation of stimulus range with the
magnitude of the interval between stimulus categories. The range of
temporal duration categories for the � � 20 ms condition was
narrower than that for the � � 80 ms condition. Thus, the present
work sought to evaluate the differential effects of interval magnitude
and stimulus range by first replicating the experiment of Murphy et al.
(2004), and then in a second experiment, evaluating controlled vari-
ations in intercategory intervals (� � 20 ms vs. � � 80 ms), range of
stimuli (7 vs. 24 categories), and range of response set options (7
categories vs. a binary response). The latter manipulation allowed for
comparisons under conditions favorable to each of the two analytic
methods, that is, FSDT (a 7-category response set) versus SDT (a
binary response set).

Experiment 1

Method

In the first experiment we derived ROC functions for a temporal
discrimination task using multiple categories of stimulus and response
sets. Temporal discriminations were selected because the power law
exponent for this class of discrimination is generally agreed to be
close or equivalent to unity (i.e., the psychophysical function is linear;
see Stevens, 1961; but see Hancock, 2013). This simplifies the appli-
cation of FSDT to the perceptual dimension by allowing for equal-
interval increments in duration across the categories to be discrimi-
nated. Response bias was manipulated using a payoff matrix which
encouraged conservative, lenient, or unbiased (“neutral”) responding,
respectively. In addition, two levels of discrimination difficulty were
employed, which were manipulated by changing the differences in
duration between stimulus categories.

Participants. Six students from the University of Central
Florida (three men and three women) participated in this study for
monetary compensation. They were treated according to the APA
guidelines on participation and all procedures were reviewed and
approved by the internal Institutional Review Board (IRB).

Stimuli. The stimulus employed in this experiment consisted
of a 6 � 6 cm light gray square with a black surround. The square
was presented at seven different durations depending on the dif-
ficulty level. For the “less difficult” condition, seven durations
were used ranging from 200 ms to 680 ms, with a difference of 80
ms between each category and the category below or above it (� �
80 ms condition). In the “more difficult” condition the seven
durations ranged from 200 ms to 320 ms, with a difference of 20
ms between adjacent categories (� � 20 ms condition). Partici-
pants were not explicitly informed of either the number of stimulus
categories or of the specific durations presented.

Procedure. On the first day, participants received instructions
and completed two 40-min practice sessions on the task. One
session was designated for each difficulty level of the task (� � 20
ms and � � 80 ms). The order in which the participants received
the difficulty levels was counterbalanced. For the practice and
experimental sessions, each condition was divided into four, 10-
min blocks of trials, with a brief rest interval between each block.
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On the subsequent 3 days of the experiment, participants en-
gaged in a total of six, 40-min detection tasks (each preceded by a
5-min warm-up session) consisting of the two temporal difficulty
levels (� � 20 ms and � � 80 ms) at three levels of instruction
bias (lenient, neutral, and conservative). Participants received the
treatments over 3 days during a 2-week period. Each day they
received one of the bias manipulations and each difficulty level.
This was done in order to avoid problems with asking observers to
change their response criterion (i.e., as a result of the payoff
matrix) in the middle of an experimental session. The order in
which the participants received the different treatments was coun-
terbalanced such that each participant received one of the six
possible combinations of bias condition. Within each bias condi-
tion, three of the participants received the difficult task (� � 20)
first; the other three received the easy task (� � 80) first.

The task required the participants to judge the relative duration
that the gray square appeared on the screen. Participants were
instructed to respond to stimuli by rating the degree to which each
stimulus was shorter in duration (a lower level of “signalness”)
versus longer in duration (a higher level of “signalness”) by
pressing keys 1 through 7 on a computer keyboard, with the
response “1” indicating that the stimulus was a “full nonsignal”
and the response “7” indicating that the stimulus was a “full
signal.” For each condition the event rate was 21 events/min,
and each of the seven different stimuli was presented 72 times
during each session. The order in which the stimuli were presented
within each condition was randomized. Note that an odd number of
stimulus categories was selected in order to evaluate the influence
of a middle category on the crisp SDT analysis, as this category
can be viewed as the maximum level of uncertainty in the stimulus
(s) or, subjectively, in the observer (r).

For the manipulation of response bias, three instructional sets were
employed to induce lenient, unbiased, and conservative responding
(see Appendix). During the task with the lenient instruction set,
participants were informed that they would receive (�10) points for
each correct identification, defined as a correct rating of the duration
the square was on the screen. However, they were told that they would
lose (�10) points for each missed signal, which was defined as an
underestimation of the duration the square appeared on the screen.
Finally, they were informed that they would be penalized (�1) point
for each false alarm, which was defined as an overestimation of the
duration of the square. In the unbiased (“neutral”) conditions partic-
ipants were informed that they would receive (�1) point for each
correct identification. However, they were told that they would be
penalized (�1) point for each missed signal and that they would be
penalized a (�1) point for each false alarm. In the conservative
conditions participants were informed that they would receive (�10)
points for each correct identification, and were told that they would be
penalized (�1) point for each missed signal and (�10) points for each
false alarm.

Results

Current algorithms for estimation of ROC curves require pro-
vision of frequencies of response categories (e.g., ROCKIT; Metz,
1998; FitROC; Wickens, 2002). However, these programs do not
permit application of fractional frequencies such as those associ-
ated with an FSDT analysis. Due to this constraint of available
estimation procedures, fuzzy ROC functions were therefore esti-

mated by rounding the frequencies to the nearest whole number
and entering them into FitROC: Parameter Estimation for Gauss-
ian Signal Detection Model (Wickens, 2002). Although some
precision is lost in rounding, the frequencies obtained are fuzzy
because they were derived using the mixed implication functions
(equations 1–4). Version 2.1 of FitROC provides (a) the intercept
and slope for the z-score form of the ROC (zH � a � b zF); (b) a
�2 test of how well an ROC curve fits the Gaussian model; (c)
estimates of perceptual sensitivity (Az/d=/da); and (d) estimates of
criterion (	) and response bias (ln�). The program also provides
standard errors for each parameter estimated. Difficulty conditions
were compared using z tests as described in Wickens (2002). The
quality of ROC model fit was evaluated using the �2 goodness-
of-fit test as also recommended by Wickens (2002). A statistically
significant (p 
 .05) �2 test is interpreted as an indication of poor
model fit. The FitROC software provides this test for both the
equal variance and unequal variance models. The degrees of free-
dom for this test are the number of cells in a stimulus type (t) by
response category (r) matrix minus the number of parameters (p) to
be estimated, as shown in Equation 9:

df � �t�r-1�-p� (9)

Note that the procedures for calculating parameters were the
same for both FSDT and traditional SDT analyses. The two models
differ in how hit and false alarm rates are calculated. The formulae
for computing FSDT hits and false alarm proportions (see Equa-
tions 1–8) were obtained from Parasuraman et al. (2000), and the
method for computing crisp hit and false alarm rates followed
standard procedures (e.g., Macmillan & Creelman, 2005; Wickens,
2002). The data for the latter analyses were simplified by bifur-
cating the seven categories in two ways; either with the middle
category considered a “nonsignal” or with it considered as a
“signal.” The mapping functions for the fuzzy and crisp analyses
are shown in Figure 4. The goodness of fit (�2), intercept (i.e.,
“a”), slope (i.e., “b”), perceptual sensitivity, and response bias
estimates for both the traditional SDT and FSDT methods for the
� � 20 ms and � � 80 ms are reported in Tables 3 (Participants
1 and 2), 4 (Participants 3 and 4), and 5 (Participants 5 and 6).

Traditional SDT analysis. In the � � 20 condition results
depended on both the observer and the way in which the data were
bifurcated. Thus, when the middle stimulus category was consid-
ered a “nonsignal” the equal variance model did fit for three
observers (3, 4, and 5; see Tables 4 and 5 and Figures 5 and 6), yet
the unequal variance model fitted for observer 2 (see Table 3). In
the case of the latter participant, the slope of the function was
greater than one (i.e., b � 1.181), indicating that �s 
 �n. This is
because in its most general form the ROC function is,

zH � ��N

�S
�zF � a (10)

If one sets the noise distribution to be of standard form (�N �
1), then

zH � � 1

�S
�zF � a (11)

Note that when the equal variance assumption is met, a � d=
�s � 1, and the familiar equation d= � zH – zF can be derived.
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For the remaining two observers (1 and 6) neither the equal nor
the unequal variance model fitted the data when the middle cate-
gory was classified as a nonsignal. Sensitivity scores (Az) for the
other four observers ranged from .593 to .709 (M � .652). The
corresponding range for d= (da for Participant 2) was .334 to .780
(M � .558).

When the middle stimulus was coded as a “signal” the (same)
data for Observer 1 fit the equal variance model (although the
unequal variance model did not fit the data; see Table 3 and Figure
5). Observers whose data fit the equal variance assumption when
the middle category was coded as a nonsignal also fit that model
when the middle stimulus was coded as a signal, although for

Figure 4. FSDT and traditional SDT mapping functions for Experiment 1.

Table 3
Experiment 1: Goodness of Fit, Sensitivity, and Criterion (Response Bias) Statistics Calculated From the Hits, False Alarms, Misses,
and Correct Rejections for Participants 1 and 2 (Standard Errors in Parentheses)

�2 A(z) d’a a b C ln(�) N ln(�) L ln(�)

Participant 1 (Female)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as nonsignal

6.720n (p 
 .05) .603 (.033) .369 (.123) .371 (.143) 1.008 (.122) .479 (.100) .545 (.100) .135 (.144)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as signal

5.598e (p � .061)� .601 (.015) .361 (.054) .361 (.054) 1.00 .160 (.031) .267 (.046) �.116 (.023)
Fuzzy SDT Analysis � � 20 ms condition

.563e (p � .75) .783 (.012) 1.107 (.056) 1.107 (.056) 1.00 .518 (.061) .659 (.068) �.043 (.051)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as nonsignal

.521e (p � .75) .713 (.015) .795 (.063) .795 (.063) 1.00 .934 (.092) 1.116 (.109) .148 (.037)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as signal

1.740e (p � .40) .753 (.013) .967 (.057) .967 (.057) 1.00 .476 (.058) .709 (.070) �.361 (.050)
Fuzzy SDT Analysis � � 80 ms condition

1.468e (p � .47) .862 (.009) 1.539 (.059) 1.539 (.059) 1.00 .762 (.088) 1.016 (.096) �.171 (.075)

Participant 2 (Male)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as nonsignal

2.779u (p � .096) .709 (.018) .780 (.075) .853 (.079) 1.181 (.111) 1.069 (.664) .246 (.097) �.851 (.112)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as signal

.467e (p � .75) .691 (.019) .707 (.076) .707 (.076) 1.00 1.257 (.160) �.278 (.043) �1.294 (.160)
Fuzzy SDT Analysis � � 20 ms condition

1.692e (p � .42) .821 (.013) 1.298 (.073) 1.298 (.073) 1.00 2.252 (.186) �.144 (.063) �1.506 (.132)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as nonsignal

27.612n (p 
 .001) .746 (.018) .937 (.077) .781 (.083) .624 (.076) 2.119 (.324) �.144 (.135) �.580 (.115)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as signal

59.355 n (p 
 .001) .826 (.011) 1.329 (.060) 1.059 (.062) .519 (.063) .781 (.163) �.860 (.131) �1.263 (.093)
Fuzzy SDT Analysis � � 80 ms condition

18.366n (p 
 .001) .849 (.013) 1.459 (.079) 1.130 (.082) .447 (.067) 1.384 (.248) �.677 (.167) �1.237 (.127)

Note. C � Conservative; N � unbiased; L � Lenient; u data fits the unequal variance model; e data fits the equal variance model; n neither model fits;
values presented correspond to the unequal variance model; CF � neither model fit, and a convergence failure was obtained for the unequal variance case;
� although the equal variance model fit marginally, the unequal variance model did not fit (�2(1) � 5.028, p � .025); a For cases where the equal variance
model fit d’ is reported. For all other cases, da is reported.
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Participants 4 and 5 the fit was associated with a failure of the
more general, unequal variance model to fit. In addition, when the
middle stimulus was coded as a signal, the data for Observer 2
the equal variance model fit. By contrast, the other categorization
of the middle stimulus resulted in the unequal variance model fit
for that participant. Note that for the � � 20 condition both
instances in which neither model fit the data occurred when the
middle category was classified as a nonsignal.

For the � � 80 condition, the two categorization schemes were
more consistent within observers (see Tables 3, 4, and 5 and
Figures 5 and 6). Regardless of whether the middle category was
coded as a signal or nonsignal, the equal variance assumption was
met by the data of Observer 1 and the unequal variance assumption
was met by the data of Observers 5 and 6. Neither model fit for
Observers 2 and 3; convergence failures were observed for Par-
ticipant 4. Note, however, that for the latter individual, no conver-
gence failures were observed in the fuzzy analysis of the same
data, as we show in the subsequent section on FSDT analysis
directly. This indicates that the failure to converge resulted from
the procedures used to categorize the data for crisp analysis rather
than the pattern of responding of this latter participant per se. In
general, model fits were better in the � � 20 condition than in the
� � 80 condition. In the case of the latter, the way in which
the middle category was classified had little effect on model fit.
Thus, the effect of the middle category depended on difficulty
level and affected whether the Gaussian model fit the data, and, if

so, whether the fit was for the equal variance or the unequal
variance model.

Comparison of difficulty conditions using traditional SDT.
Comparisons of the two difficulty conditions were accomplished
by examining the equal variance models for Participant 1 and the
unequal variance models for Participants 5 and 6. Note that com-
parisons were computed only in cases where either the equal
variance or the unequal variance models fit for both difficulty
conditions. Such comparisons were not possible for Participants 2,
3, or 4. For Participants 1 and 6 the comparison was for the middle
category as signal, because neither model fit when that category
was classified as a nonsignal. For Participant 5 comparisons could
be computed for each classification of the middle stimulus.

When the middle stimulus was coded as a nonsignal, the sen-
sitivity of Observer 5 was higher in the � � 80 than in the � � 20
condition (z � 8.09; see Table 5 and Figure 6). The same pattern
was observed for this participant when the middle category was
coded as a signal (z � 6.38; see Table 5 and Figure 6). In addition,
when the middle category was coded as a signal, higher sensitiv-
ities were associated with the � � 80 condition compared to the
� � 20 condition for Participants 1 (z � 7.66; see Table 3 and
Figure 5) and 6 (z � 2.62; see Table 5 and Figure 6).

FSDT analysis. For the purpose of the present work, perhaps
the most important analyses concerned the FSDT interpretations of
the recorded data. Here, in the � � 20 condition, the fuzzy data for
each observer fit the Gaussian equal variance model with the

Table 4
Experiment 1: Goodness of Fit, Sensitivity, and Criterion (Response Bias) Statistics Calculated From the Hits, False Alarms, Misses,
and Correct Rejections for Participants 3 and 4 (Standard Errors in Parentheses)

�2 A(z) d’a a b C ln(�) N ln(�) L ln(�)

Participant 3 (M)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as nonsignal

.526e (p � .75) .593 (.018) .334 (.065) .334 (.065) 1.00 .703 (.143) .273 (.056) �.166 (.038)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as signal

.012e (p � .99) .611 (.016) .397 (.060) .397 (.060) 1.00 .311 (.054) .084 (.023) �.579 (.093)
Fuzzy SDT Analysis � � 20 ms condition

1.748e (p � .41) .789 (.012) 1.136 (.057) 1.136 (.057) 1.00 .728 (.071) .346 (.058) �.509 (.063)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as nonsignal

12.351n (p 
 .01) .545 (.032) .161 (.113) .134 (.098) .611 (.079) 1.296 (.245) .155 (.134) �.407 (.144)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as signal

7.708n (p 
 .01) .694 (.013) .719 (.053) .574 (.046) .526 (.062) �.049 (.114) �.633 (.123) �.859 (.075)
Fuzzy SDT Analysis � � 80 ms condition

2.202u (p � .10) .793 (.021) 1.156 (.102) .914 (.123) .501 (.128) .086 (.249) �.314 (.266) �.815 (.240)

Participant 4 (F)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as nonsignal

1.14e (p � .55) .679 (.014) .657 (.054) .657 (.054) 1.00 .074 (.030) .186 (.034) .426 (.047)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as signal

5.323e (p � .070)� .697 (.013) .731 (.053) .731 (.053) 1.00 �.302 (.040) �.270 (.039) �.023 (.033)
Fuzzy SDT Analysis � � 20 ms condition

.324u (p � .56) .800 (.012) 1.193 (.058) 1.110 (.218) .856 (.351) �.317 (.401) �.188 (.412) .071 (.401)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as nonsignal

CF
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as signal

CF
Fuzzy SDT Analysis � � 80 ms condition

CF

Note. C � Conservative; N � unbiased; L � Lenient; u data fits the unequal variance model; e data fits the equal variance model; n neither model fits;
values presented correspond to the unequal variance model; � although the equal variance model fit marginally, the unequal variance model did not fit
(�2(1) � 4.227, p � .040). a For cases where the equal variance model fit d’ is reported. For all other cases, da is reported.
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exception of Participant 4, for whom the unequal variance model
fit. As can be seen in Tables 3, 4, and 5, sensitivities across
observers ranged from .78 to .82 (M � .80). The corresponding
values of d= (da for Participant 4) ranged from 1.11 to 1.30 (M �
1.19). In the � � 80 condition the data of two observers met the
Gaussian equal variance assumption (Observers 1 and 5; see
Tables 3 and 5 and Figures 5 and 6). The data of two other
observers (3 and 6) met the unequal variance assumption, and in
each case the slope of the ROC (z-score form) was less than one,
indicating that �s � �n. This meant that for only two observers (2
and 4) did neither model fit the data. Figures 5 and 6 illustrate why
this occurred. For both of these observers, each data point was
associated with a different level of sensitivity in the � � 80
condition. Essentially, these points fall on different ROCs. We
might suspect that the reason for this might be that these two
observers had difficulty with the task itself. Although this may be
true (in each session the � � 80 condition was completed first for
these observers), it is unlikely because across sessions these par-
ticipants were able to perform the � � 20 condition such that the
data conformed to the Gaussian equal variance (4) or unequal
variance (2) assumptions.

Comparison of difficulty conditions for FSDT analysis.
Comparisons of the two difficulty conditions for FSDT were
accomplished by comparing the equal variance models for Partic-
ipants 1 and 5 and the unequal variance models for Participants 3

and 6. Statistically significant differences were obtained for ob-
server 1 (z � 5.27) and observer 5 (z � 4.22), with the higher
sensitivity associated with the � � 80 condition in each case.
Comparable tests for observers 3 (z � .28) and 6 (z � �.68)
revealed no statistically significant differences. Thus, the difficulty
manipulation manifested only in the cases where both conditions
met the Gaussian equal variance assumption. Note that in this case
the slopes of the two functions were equivalent (b � 1), indicating
that the independence of sensitivity and response bias asserted by
traditional SDT may extend to FSDT.

Comparison of traditional SDT and FSDT. Where compari-
sons were possible (i.e., for all participants in the � � 20 condition
and Participants 1, 5, and 6 in the � � 80 condition), FSDT analyses
revealed higher sensitivity scores than the traditional SDT analysis.
This interpretation is supported by z tests, summarized in Table 6. As
can be seen, in every instance the FSDT analysis yielded statistically
significantly higher sensitivity scores than the traditional analysis.
These results indicate that FSDT consistently captured observer sen-
sitivity to different categories of duration that was not reflected in the
traditional SDT analysis, most likely because in the latter the stimulus
and response sets were collapsed into two categories. Further, these
findings confirm the arguments by previous researchers (Hancock et
al., 2000; Parasuraman et al., 2000) that FSDT is a useful extension of
the traditional model for instances in which multiple stimulus and
response categories obtain.

Table 5
Experiment 1: Goodness of Fit, Sensitivity, and Criterion (Response Bias) Statistics Calculated From the Hits, False Alarms, Misses,
and Correct Rejections for Participants 5 and 6 (Standard Errors in Parentheses)

�2 A(z) d’a a b C ln(�) N ln(�) L ln(�)

Participant 5 (M)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as nonsignal

5.313e (p � .070)� .628 (.015) .463 (.057) .463 (.057) 1.00 .545 (.073) .346 (.049) �.016 (.021)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as signal

3.449e (p � .10)# .622 (.015) .440 (.056) .440 (.056) 1.00 .296 (.046) .151 (.030) �.357 (.050)
Fuzzy SDT Analysis � � 20 ms condition

.747e (p � .68) .790 (.011) 1.14 (.055) 1.14 (.055) 1.00 .563 (.064) .367 (.059) �.294 (.056)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as nonsignal

.225u (p � .60) .794 (.014) 1.16 (.070) 1.716 (.281) 1.838 (.291) 1.227 (.091) 1.040 (.164) .607 (.175)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as signal

.003u (p � .95) .753 (.014) .967 (.063) 1.197 (.109) 1.437 (.207) .628 (.125) .339 (.149) �.560 (.123)
Fuzzy SDT Analysis � � 80 ms condition

1.443e (p � .48) .850 (.009) 1.464 (.057) 1.464 (.057) 1.00 .508 (.076) .103 (.070) �.433 (.079)

Participant 6 (F)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as nonsignal

17.435n (p 
 .001) .699 (.021) .737 (.085) .787 (.140) 1.130 (.150) .634 (.114) .690 (.102) .109 (.134)
Traditional SDT Analysis � � 20 ms condition. Middle stimulus coded as signal

3.679u (p � .055) .673 (.017) .633 (.067) .701 (.063) 1.207 (.173) .148 (.146) .235 (.139) �.476 (.098)
Fuzzy SDT Analysis � � 20 ms condition

3.628e (p � .15)� .817 (.010) 1.280 (.055) 1.280 (.055) 1.00 .242 (.062) .293 (.063) �.311 (.063)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as nonsignal

.081u (p � .75) .610 (.026) .393 (.094) .321 (.084) .576 (.064) .840 (.147) .614 (.134) �.562 (.106)
Traditional SDT Analysis � � 80 ms condition. Middle stimulus coded as signal

.461u (p � .49) .729 (.013) .864 (.058) .686 (.053) .511 (.054) �.089 (.120) �.081 (.120) �.980 (.058)
Fuzzy SDT Analysis � � 80 ms condition

.703u (p � .40) .804 (.018) 1.209 (.092) .929 (.096) .428 (.087) .059 (.217) �.105 (.219) �1.128 (.171)

Note. C � Conservative; N � unbiased; L � Lenient; u data fits the unequal variance model; e data fits the equal variance model n neither model fits;
values presented correspond to the unequal variance model; CF � neither model fit, and a convergence failure was obtained for the unequal variance case;
� although the equal variance model fit marginally, the unequal variance model did not fit (�2(1) � 3.831, p � .050). # although the equal variance model
fit, the unequal variance model was marginal (�2(1) � 3.408, p � .065); � although the equal variance model fit, the unequal variance model was marginal,
�2(1) � 3.043, p � .081. a For cases where the equal variance model fit d’ is reported. For all other cases, da is reported.
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Discussion

The sensitivity associated with the FSDT analysis was higher
than that associated with the traditional SDT analyses. This is
consistent with previous research (Masalonis & Parasuraman,
2003; Murphy, Szalma, & Hancock, 2003, 2004), and may be due
to the loss of information that necessarily occurs when multiple
stimulus levels and responses are constrained to collapse into two
categories. That is, the higher sensitivity values of FSDT may be
due to the fact that the latter theory allows a degree of membership
in the correct detection category rather than full membership in the
miss category, and similarly, allowing only a degree of false alarm
rather than a “full false alarm.” Partial hit rates in FSDT are thus
categorized as either full hits or full misses in the crisp SDT
analysis, and partial false alarms are categorized in the traditional
SDT analyses as full false alarms or correct rejections. Thus, the
loss of information resulting from forcing events into mutually
exclusive categories, as required by traditional SDT, serves to

produce sensitivity scores that may not always reflect the “true”
level of sensitivity.

A central question for FSDT is whether the assumptions of
traditional SDT hold for this new model. The current results
indicate that at both difficulty levels and for all participants (with
the exception only of Participants 2 and 4 in the � � 80 ms
condition), the assumption of normally distributed noise and signal
plus noise distribution is tenable (see �2 tests in Tables 3 and 4).
In addition, the equal variance assumption holds for the more
difficult discrimination for five of the six participants in the � �
20 ms condition, although the data of only two participants met
this assumption in the � � 80 ms condition. Although the equal
variance assumption is not crucial to application of SDT, it can
bias standard deviation measures of sensitivity (d=) and response
bias (c), and whether FSDT conforms to this assumption may have
implications for selection of parametric measures to evaluate per-
formance using the model.

Figure 5. Crisp and Fuzzy ROC functions for Participants 1�3 of Experiment 1. Note: Error bars are 95%
confidence intervals.
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However, it is not clear whether the outcome differences for the
two difficulty conditions are due to differences between the two
absolute � values (i.e., 20 ms vs. 80 ms) or to the range of
durations used (200–320 ms vs. 200–680 ms, respectively), be-
cause the two are necessarily confounded in the present protocol.
Experiment 2, therefore, was designed to disambiguate this con-
found by examining the respective effects of the size of stimulus
and response sets on signal detection using FSDT and by exploring
the impact of stimulus range and perceptual “distance” between
adjacent stimulus categories. In Experiment 2, the effect of dis-
crimination difficulty was, therefore, replicated, and the range of
stimulus categories was manipulated as well as the range of
response categories (i.e., binary vs. multicategorical). A goal for
this study was to investigate the effects of systematic variation in
stimulus and response set size on fuzzy ROC functions.

Experiment 2

Data from Experiment 1 suggested that the fundamental
assumptions of normally distributed noise and signal � noise

distributions of equal variance are reasonably met by FSDT
analysis, although there was greater consistency associated with
the � � 20 condition relative to the � � 80 condition. These
results suggest that the decision space shown in Figure 3 is an
adequate representation of the data derived from fuzzy as well
as from traditional SDT hit and false alarm rates. However, the
less stable estimates of the traditional analyses suggest that
bifurcation of the type employed here may introduce either
artifact and/or error into SDT analyses. Given the instability in
the � � 80 ms condition, an additional replication of the SDT
versus FSDT differences was considered advisable. In addition,
in Experiment 1 the effectiveness of the discrimination diffi-
culty manipulation was observed only in the two cases in which
the equal variance model fit the data for both conditions.
Inspection of the figures indicates that this is not an artifact. For
the other four observers, the ROC points of the two conditions
are quite close to one another.

Experiment 1 was, therefore, replicated and extended to
manipulate response set size and to evaluate the effects of

Figure 6. Crisp and Fuzzy ROC functions for Participants 4�6 of Experiment 1. Note: Error bars are 95%
confidence intervals.
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interval differences and range of stimulus (s) and response (r)
values. The two conditions of Experiment 1, seven stimulus
levels and seven response levels with two different interval
sizes (7s, 7r, � � 20 and 7s, 7r, � � 80), were replicated and
two additional conditions were added: one in which the interval
was held constant at � � 20 but the range of stimulus categories
was extended to 24 levels (24s, 7r), and one in which the
response set was binary (7s, 2r, � � 20). This permitted
comparison of response set sizes, as well as the effects of
interval differences with the number of stimulus categories held
constant (i.e., 7s, 7r, � � 20 vs. 7s, 7r, � � 80) and the
influence of the range of stimulus values with interval held
constant (i.e., 7s, 7r, � � 20 and 24s, 7r, � � 20).

Method

Participants. Four participants, two males and two females,
volunteered to participate in the experiment. They ranged in age
from 23 to 32, and were unfamiliar with the purpose of the
experiment or the stimuli used. These were different individuals
from those who participated in Experiment 1. Each of the proce-
dural and approval strictures that were applied in Experiment 1
also pertained here.

Stimuli and procedure. The stimuli and procedures were the
same as those used in Experiment 1, except that with the addition

of two task conditions participants completed the experiment over
12 days rather than 6 days as in Experiment 1.

Results

Traditional SDT analysis.
Replication of experiment 1. As in the first experiment, the

pattern of results for the traditional SDT analyses depended on
both the observer and the way in which the data were bifurcated.
In the � � 20 condition, when the middle stimulus category was
considered a “nonsignal” the equal variance model fit for Observer
3 (see Table 9 and Figure 7), and the unequal variance model fit for
Observer 1 (see Table 7 and Figure 7). In the case of the latter, the
slope of the function was greater than one, indicating that �s 
 �n.
Neither model fit the data for Participant 4, and a convergence
failure was obtained for Participant 2. A similar pattern was
observed when the middle category was classified as a signal, but
here the equal variance model did fit the data for both Participants
1 and 3.

For the � � 80 condition, when the middle stimulus category
was considered a “nonsignal” the equal variance model fit for two
observers (1 and 2; see Tables 7 and 8, respectively, and Figure 7),
and the unequal variance model fit for one observer (4; Table 10
and Figure 7). In the case of the latter, the slope of the function was
greater than one, indicating that �s 
 �n. A convergence failure
was obtained for Participant 3. However, also as in Experiment 1,
when the middle category was classified as a signal the model fit
was poor. The unequal variance model fit for Participant 1 where
the slope of the function was less than one, indicating that �s � �n.
However, neither model fit for the other three participants.

The two difficulty conditions could be compared only for Ob-
server 1 because of failures of either model to fit in both conditions
for the other participants. Sensitivity scores for the � � 80
condition were statistically significantly higher than that for the
� � 20 condition for both the middle category classified as
nonsignal analysis as well as for when that category was classified
as a signal. Note that for both of these analyses the unequal
variance models were compared. It is clear that introducing crisp
categorization leads to general failures in model fit, indicating that
such crisp categorization does not reflect the assumed decision
space of SDT and that, therefore, measures such as d= and � would
be biased if used in such cases.

Traditional SDT analysis: binary response condition. In
this condition the number of stimuli was held at seven but the
response set was restricted to a simple yes/no outcome. Unfortu-
nately, data for one of the observers could not be used in analyses
of this condition. Observer 3 failed to follow instructions and
responded here inappropriately by using multiple categories. Of
the remaining three observers, the equal variance model fit for two
of them (1 and 2) but neither model fit for Participant 4. This
pattern was observed regardless of whether the middle stimulus
was classified as a nonsignal or as a signal (Tables 7, 8, and 10,
and Figure 7). Hence, when responses are constrained to be binary,
traditional SDT reasonably reflects the decision space shown in
Figure 3. For Participant 1 sensitivity was greater for the binary
response condition relative to the 7s, 7r, � � 20 condition when
the middle stimulus was classified either as a nonsignal (z � 3.35)
or as a signal (z � 2.53). Thus, in a crisp analysis, traditional SDT
yields higher sensitivity scores when a binary response set is used

Table 6
Z-Tests for Comparison of FSDT and Traditional SDT for Each
Observer in Each Condition in Experiment 1

Observer Model compared z

� � 20
FSDT vs. SDT, nonsignal
1 — —
2 Unequal variance 4.78
3 Equal variance 9.06
4 Unequal variance 4.40
5 Equal variance 8.71
6 — —
FSDT vs. SDT, signal
1 Equal variance 9.47
2 Unequal variance 5.16
3 Equal variance 8.63
4 Unequal variance 3.93
5 Equal variance 9.03
6 Unequal variance 7.35

� � 80
FSDT vs. SDT, nonsignal
1 Equal variance 8.52
2 — —
3 — —
4 — —
5 Unequal variance 3.25
6 Unequal variance 6.13
FSDT vs. SDT, signal
1 Equal variance 6.89
2 — —
3 — —
4 — —
5 Unequal variance 5.64
6 Unequal variance 3.65

Note. The criterion for statistical significance was z
 � .05 � 1.96.
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relative to when participants can respond using multiple catego-
ries. This comparison could not be done for Participant 2 because
of convergence failures in each analysis.

Traditional SDT analysis: 24s, 7r, � � 20 condition. To
evaluate this condition using traditional SDT, the lower 12 time

intervals were classified as “nonsignals” and the upper 12 intervals
as “signals.” As in other analyses, the middle response category
was considered either as a “no” or a “yes” response in separate
analysis. When seven response categories were permitted but 24
stimuli presented, model fit varied across participants and de-

Figure 7. Crisp and Fuzzy ROC functions for Participants 1�4 of Experiment 2. Note: Error bars are 95%
confidence intervals.
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pended on how the middle response category was bifurcated.
When the middle category was classified as a “no” or “nonsignal”
response, the equal variance model fit for Observer 3 and the
unequal variance model fit for Participants 2 and 4 (see Tables 8,
9, and 10, and Figure 7). In each of the latter two cases the slope
of the function was greater than one, indicating that �s 
 �n. A
convergence failure was observed for Participant 1.

When the middle category was classified as a “yes” or “signal”
response, the equal variance model fit for Observer 2 and the
unequal variance model fit for Participants 1 and 4 (see Tables 7,
8, and 10, and Figure 7). In each of the latter two cases the slope
of the function was greater than one. Neither model fit for Partic-
ipant 3. For those participants for whom a comparison with the 7s,
7r, � � 20 condition could be made (i.e., Participant 3 when the
middle category was classified “no” and Participant 1 when the
middle category was classified as a “yes”), the relative sensitivity
scores differed in opposite directions. Thus, for Participant 3 a
higher sensitivity was obtained in the 24s, 7r, � � 20 relative
to the 7s, 7r, � � 20 condition (z � 11.18), and for Participant
1 a higher sensitivity were obtained in the 7s, 7r, � � 20
relative to the 24s, 7r, � � 20 condition (z � 2.11). Hence, in
traditional SDT analysis bifurcation of a larger stimulus range
exhibits inconsistencies in model fit similar to those associated
with a narrower stimulus range. That is, as in the 7s, 7r, � � 20
condition, in the 24s, 7r, � � 20 condition the fit of the data to

the model corresponding to the assumed decision space is
highly variable when the data are bifurcated. Although the
Gaussian assumption generally held, confirming the general
form of the decision space, failure to meet the equal variance
assumption indicates that standard deviation based measures of
sensitivity and bias (d= and c, respectively) would not be
advisable (Swets, 1996).

FSDT analysis.
Replication of experiment 1. The results for the two condi-

tions replicating Experiment 1 confirmed that for the most part the
Gaussian model did fit the data for both the 7s,7r, � � 20 and 7s,
7r, � � 80 conditions. In Experiment 1, data of three of the six
participants met the unequal variance assumption and for one
participant the data fit the equal variance model for the 7s, 7r, � �
80 condition. The same condition in Experiment 2 resulted in two
of four participants whose data fit the equal variance model and
two whose data fit the unequal variance model. As in Experiment
1, in the 7s, 7r, � � 20 condition the data in most cases of
Experiment 2 met the equal variance assumption. In all cases the
data were consistent with the Gaussian assumption of SDT. Thus,
the replication indicates that FSDT analysis of multicategorical
data adequately reflects the decision-space representation of Fig-
ure 3 and does so more consistently than the traditional SDT
analyses of the same data. Note that in both experiments, two

Table 7
Experiment 2: Goodness of Fit, Sensitivity, and Criterion (Response Bias) Statistics Calculated From the Hits, False Alarms, Misses,
and Correct Rejections for Participant 1 (Male; Standard Errors in Parentheses)

�2 A(z) d’a a b C ln(�) N ln(�) L ln(�)

Traditional SDT Analysis: Middle stimulus coded as nonsignal
7s, 7r, � � 20 ms condition

0.205u (p � .651) .809 (.020) 1.239 (.104) 3.599 (3.624) 3.985 (4.554) 1.593 (1.148) 1.488 (1.170) 1.709 (1.103)
7s, 7r, � � 80 ms condition

0.484e (p � .785) .893 (.008) 1.757 (.064) 1.757 (.064) 1.000 .482 (.100) �.174 (.097) .397 (.099)
24s, 7r, � � 20 ms condition

CF
7s, 2r, � � 20 ms condition

2.795e (p � .247) .884 (.010) 1.693 (.070) 1.693 (.070) 1.000 �.831 (.109) �1.111 (.120) �.605 (.102)

Traditional SDT Analysis: Middle stimulus coded as signal
7s, 7r, � � 20 ms condition

3.196e (p � .202) .847 (.011) 1.448 (.063) 1.448 (.063) 1.000 �.671 (.086) �.755 (.089) �.464 (.080)
7s, 7r, � � 80 ms condition

.006u (p � .940) .941 (.020) 2.211 (.242) 1.568 (.197) .074 (.230) �3.164 (3.195) �3.666 (2.999) �3.312 (3.151)
24s, 7r, � � 20 ms condition

.286u (p � .593) .645 (.095) .526 (.359) 2.898 (1.370) 7.735 (8.949) .086 (1.150) .322 (1.168) 1.091 (1.80)
7s, 2r, � � 20 ms condition

2.752e (p � .253) .883 (.009) 1.683 (.064) 1.683 (.064) 1.000 �.322 (.093) �.628 (.098) �.087 (.091)

FSDT Analysis
7s, 7r, � � 20 ms condition

.508e (p � .776) .880 (.009) 1.658 (.062) 1.658 (.062) 1.000 �.175 (.090) �.236 (.090) .025 (.089)
7s, 7r, � � 80 ms condition

.028u (p � .866) .911 (.028) 1.905 (.243) 1.423 (.287) .341 (.248) �.708 (.756) �1.367 (.675) �.799 (.752)
24s, 7r, � � 20 ms condition

1.318e (p � .252) .929 (.006) 2.074 (.067) 2.074 (.067) 1.000 �.001 (.120) �.013 (.067) .277 (.121)
7s, 2r, � � 20 ms condition

1.581e (p � .454) .794 (.012) 1.162 (.060) 1.162 (.060) 1.000 �.334 (.063) �.509 (.069) �.199 (.060)

Note. C � Conservative; N � unbiased; L � Lenient; e data fits the equal variance model; u data fits the unequal variance model; n neither model fits;
values presented correspond to the unequal variance model; CF neither model fit, and a convergence failure was obtained for the unequal variance
case. a For cases where the equal variance model fit d’ is reported. For all other cases, da is reported.
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individuals showed significant differences in performance, with
the � � 80 condition yielding superior performance relative to the
� � 20 condition. Thus, increasing the distance between catego-
ries but holding the number of categories constant has either a
facilitative or null effect on sensitivity across observers.

FSDT Analysis: Binary response condition. In this condi-
tion, the number of stimuli was held at seven but the response set
was restricted to only yes/no. Here, the equal variance model fit for
two observers (1 and 2), but neither model fit for Observer 4.
Examining the pattern within each of the three participants be-
tween the binary and s7, r7, � � 20 conditions, in one case
(Participant 1) both conditions fit the equal variance model. For
Participant 2 the data for the binary condition fit the equal variance
model but the s7, r7, � � 20 condition conformed to the unequal
variance model (see Table 8 and Figure 7). For Observer 4 the s7,
r7, � � 20 condition fit an equal variance model, but, as noted
above, neither model fit the data for the binary condition. Hence,
when this participant was forced to make binary decisions to fuzzy
stimuli, the SDT model illustrated in Figure 3 failed to provide an
adequate fit to the data.

Note that the binary response set resulted in lower sensitivity
scores relative to the s7, r7, � � 20 condition. The differences in
performance between the two conditions for the two participants
for whom comparisons could be made were evaluated via z tests,
and in each case the 7s, 7r, � � 20 condition yielded higher Az

scores relative to the binary condition (Participant 1, z � 5.73;
Participant 2, z � 2.83). This provides support for the notion that
constraining response sets impairs task performance when fuzzy
stimulus sets are used.

FSDT analysis: 24s, 7r, � � 20 condition. The equal vari-
ance model fit for all observers when seven response categories are
permitted but there are 24 stimulus categories. Relative to the 7s,
7r, � � 20 condition, higher sensitivities were obtained in the 24s,
7r, � � 20 condition for each participant. Thus, extending the
stimulus range consistently facilitated fuzzy sensitivity, and rela-
tive to the crisp analysis, the FSDT analysis for this condition was
more consistent with the assumptions of SDT regarding the struc-
ture of the decision space.

Comparison of traditional SDT and FSDT. Formal compar-
isons were computed to determine whether the differences in
sensitivity observed for the two methods were statistically reliable.
Z tests for comparisons of SDT and FSDT analyses are shown in
Table 11. Note that comparisons were made only in cases in which
an adequate model fit was obtained for either the equal or unequal
variance model. Where significant differences were observed
FSDT analysis again yielded higher sensitivity scores than tradi-
tional SDT analysis when a large number of categories were
presented (i.e., 24) and multiple responses were permitted. Even in
cases in which there were nonsignificant differences (e.g., Partic-
ipants 1 and 2 for the 7s, 7r, � � 80 condition; see Table 11) the

Table 8
Experiment 2: Goodness of Fit, Sensitivity, and Criterion (Response Bias) Statistics Calculated From the Hits, False Alarms, Misses,
and Correct Rejections for Participant 2 (Female) (Standard Errors in Parentheses)

�2 A(z) d’a a b C ln(�) N ln(�) L ln(�)

Traditional SDT Analysis: Middle stimulus coded as nonsignal
7s, 7r, � � 20 ms condition

CF
7s, 7r, � � 80 ms condition

0.544e (p � .762) .941 (.007) 2.205 (.088) 2.205 (.088) 1.000 �.322 (.136) �2.056 (.201) �2.109 (.204)
24s, 7r, � � 20 ms condition

1.883u (p � .170) .886 (.010) 1.702 (.074) 2.044 (.158) 1.373 (.171) 1.316 (.104) �1.370 (.181) �.039 (.160)
7s, 2r, � � 20 ms condition

.992e (p � .609) .774 (.013) 1.065 (.061) 1.065 (.061) 1.000 .507 (.063) �.242 (.057) �.519 (.068)

Traditional SDT Analysis: Middle stimulus coded as signal
7s, 7r, � � 20 ms condition

CF
7s, 7r, � � 80 ms condition

4.882n (p � .027) .897 (.039) 1.786 (.303) 2.466 (.193) 1.677 (.483) �.856 (.387) �3.047 (.452) �4.710 (1.028)
24s, 7r, � � 20 ms condition

1.149e (p � .563) .905 (.010) 1.852 (.088) 1.852 (.088) 1.000 �.341 (.109) �2.889 (.240) �1.856 (.180)
7s, 2r, � � 20 ms condition

.751e (p � .687) .782 (.013) 1.104 (.061) 1.104 (.061) 1.000 .713 (.078) �.065 (.055) �.355 (.060)

FSDT Analysis
7s, 7r, � � 20 ms condition

.032u (p � .859) .788 (.020) 1.131 (.097) .997 (.122) .744 (.099) 3.039 (.573) .822 (.146) �.371 (.136)
7s, 7r, � � 80 ms condition

2.228e (p � .328) .929 (.007) 2.078 (.075) 2.078 (.075) 1.000 �.114 (.121) �1.378 (.152) �1.611 (.161)
24s, 7r, � � 20 ms condition

.375e (p � .829) .929 (.007) 2.073 (.073) 2.073 (.073) 1.000 1.243 (.145) �1.196 (.143) �.463 (.124)
7s, 2r, � � 20 ms condition

.802e (p � .670) .719 (.014) .820 (.058) .820 (.058) 1.000 .433 (.054) �.112 (.041) �.314 (.048)

Note. C � Conservative; N � unbiased; L � Lenient; e data fits the equal variance model; u data fits the unequal variance model; n neither model fits;
values presented correspond to the unequal variance model; CF neither model fit, and a convergence failure was obtained for the unequal variance
case. a For cases where the equal variance model fit d’ is reported. For all other cases, da is reported.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1756 SZALMA AND HANCOCK



Az score for FSDT was higher than that for traditional SDT. In
contrast, for the two cases that could be compared (Participants 1
and 2) traditional SDT yielded higher Az scores when a binary
response was required relative to the FSDT analysis. Thus, the
sensitivity scores one observes with respect to the two analyses
varies according to the size of the stimulus and response set. The
size of the temporal interval seems to exert less of an effect, except
that the more difficult discrimination yielded more consistent
model fits across participants. Given that the same data were used
for the SDT and FSDT analyses, these results indicate that how the
data are structured, based on common assumptions regarding the
underlying decision space, can affect the level of sensitivity esti-
mated by the respective procedures.

Discussion

For the binary response condition the equal variance model
fitted appropriately for Participants 1 and 2 whether the analysis
was fuzzy or crisp, and neither model fit the data of Participant 4
across all analyses. For the other conditions in which multicat-
egorical responses were permitted, the FSDT analysis fitted better
than the crisp analyses. Further, the FSDT analyses yielded higher
sensitivities for these conditions relative to the crisp analyses (this
general pattern was also observed in the study reported by Murphy
et al., 2004).

For the two conditions that were replicated, in each experiment
the slope was always less than one when the unequal variance
model fit. This pattern is consistent with that reported by Murphy
et al. (2004). Recall that when b 
 1 the implication is that the
variance of the S � N distribution is larger than that of the N
distribution. This is based on the following representation of an
ROC function,

zH � ��n ⁄ �s�zF � ��s ⁄ �s�.

For the unequal variance model, then, the slope is b � �n /�s so
that when b 
 1, then �s � �n, and when b � 1, then �s 
 �n. The
relatively consistent b 
 1 suggests that in cases where the unequal
variance model fit, the fuzzy signals shifted the position of the
distribution and also increased its variability. Although it is pos-
sible that some participants had difficulty in setting response
criteria, in every case in which the unequal variance model fit in
one condition, the equal variance model fit for that same individual
in the other condition (this only with the exception of Participant
4 in Experiment 2, whose data did not converge in the 7s, 7r, � �
80 condition). Thus, whether the equal variance or unequal vari-
ance model fitted depended on both observer and condition. In no
case did an observer produce data that fit the unequal variance
model in both conditions in the FSDT analysis. This is important
because it suggests that the form of the distributions in the decision

Table 9
Experiment 2: Goodness of Fit, Sensitivity, and Criterion (Response Bias) Statistics Calculated From the Hits, False Alarms, Misses,
and Correct Rejections for Participant 3 (Male) (Standard Errors in Parentheses)

�2 A(z) d’a a b C ln(�) N ln(�) L ln(�)

Traditional SDT Analysis: Middle stimulus coded as nonsignal
7s, 7r, � � 20 ms condition

0.323e (p � .851) .672 (.017) .632 (.066) .632 (.066) 1.000 .485 (.062) .747 (.091) .531 (.067)
7s, 7r, � � 80 ms condition

CF
24s, 7r, � � 20 ms condition

.941e (p � .625) .887 (.009) 1.710 (.067) 1.710 (.067) 1.000 .485 (.097) 1.319 (.125) .317 (.095)
7s, 2r, � � 20 ms condition

—

Traditional SDT Analysis: Middle stimulus coded as signal
7s, 7r, � � 20 ms condition

.494e (p � .781) .676 (.015) .645 (.058) 645 (.058) 1.000 .074 (.033) �.028 (.031) �.450 (.045)
7s, 7r, � � 80 ms condition

4.996n (p � .025) .939 (.012) 2.185 (.135) 1.991 (.150) .812 (.240) �.616 (.347) �1.494 (.292) �1.841 (.232)
24s, 7r, � � 20 ms condition

4.391n (p � .036) .809 (.047) 1.234 (.246) 2.083 (.187) 2.168 (.682) �.471 (.362) �.210 (.370) �3.205 (.801)
7s, 2r, � � 20 ms condition

—

FSDT Analysis
7s, 7r, � � 20 ms condition

.321e (p � .852) .814 (.011) 1.261 (.060) 1.261 (.060) 1.000 .433 (.071) .227 (.066) .024 (.064)
7s, 7r, � � 80 ms condition

.008u (p � .928) .867 (.046) 1.576 (.302) 1.130 (.268) .170 (.283) �1.608 (1.710) �1.768 (1.683) �2.036 (1.616)
24s, 7r, � � 20 ms condition

3.530e (p � .171) .916 (.007) 1.95 (.066) 1.95 (.066) 1.000 .192 (.111) .319 (.113) �.202 (.111)
7s, 2r, � � 20 ms condition

—

Note. C � Conservative; N � unbiased; L � Lenient; e data fits the equal variance model; u data fits the unequal variance model; n neither model fits;
values presented correspond to the unequal variance model; CF neither model fit, and a convergence failure was obtained for the unequal variance case.
a For cases where the equal variance model fit d’ is reported. For all other cases, da is reported.
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space representation is of the same general form for FSDT as it is
for traditional SDT. However, the results also suggest that the
structure of the implied decision space may vary somewhat (in
terms of the variability of each distribution) depending on which
analysis is computed, and, therefore, the appropriateness of d= and
c may also depend on analysis method.

The results of Experiment 2 indicate that the effects of crisp
versus fuzzy treatment of multicategorical data have similar im-
plications for model fit regardless of the magnitude of stimulus
range or the magnitude of differences between categories. How-
ever, the range of response set does affect the relative model fits.
Although fuzzy SDT data were consistent with the SDT model fit
for both binary and multicategorical response, in the latter FSDT
fit the decision model better than crisp SDT.

General Discussion

For the FSDT analyses, the results generally confirmed those of
Murphy et al. (2004), in that the equal variance model fit for the
� � 20 ms condition. With respect to the difficulty discrimination,
results were mixed, but again this is consistent with the findings of
Murphy et al. (2004). In some cases the difficult condition was
associated with lower sensitivity, in other cases scores were sim-
ilar, and in a few cases the difficult condition was associated with
higher sensitivity. However, the results of the current experiments

were more consistent across observers than those of Murphy et al.
(2004). In both experiments, FSDT analysis (for the multicategori-
cal response conditions) resulted in higher sensitivities than SDT
analysis.

With respect to the comparison of binary versus categorical
response, results of this study were generally consistent with those
reported by Szalma and O’Connell (2011). That is, for the FSDT
analysis higher sensitivity was observed for the multicategorical
response set than for the binary response set. Comparison of binary
SDT with binary FSDT also generally conformed to the results
reported by Szalma and O’Connell (2011), in that for binary
responses SDT yielded higher sensitivities than FSDT analysis.
This may be due to the loss of information for an FSDT analysis
that occurs when a binary decision is required.

The ROC experiments reported here formally confirm that the
Gaussian assumptions of traditional SDT are reasonably met in
FSDT. In a number of cases the equal variance assumption was
also met, but the results for this assumption are, to a degree,
somewhat less consistent. It is not clear whether the case-specific
failures to meet the equal variance assumption arose from the
FSDT model itself or the inability of individual participants to
adjust their decision criteria appropriately. Recall that response
bias was manipulated using traditional payoff matrices demon-
strated to be effective in traditional ROC analysis (e.g., see Mac-

Table 10
Experiment 2: Goodness of Fit, Sensitivity, and Criterion (Response Bias) Statistics Calculated From the Hits, False Alarms, Misses,
and Correct Rejections for Participant 4 (Female) (Standard Errors in Parentheses)

�2 A(z) d’a a b C ln(�) N ln(�) L ln(�)

Traditional SDT Analysis: Middle stimulus coded as nonsignal
7s, 7r, � � 20 ms condition

4.412n (p � .036) .816 (.022) 1.273 (.115) 1.689 (.422) 1.588 (.376) 1.287 (.170) 1.142 (.227) .746 (.269)
7s, 7r, � � 80 ms condition

2.402u (p � .121) .896 (.010) 1.783 (.077) 2.612 (.279) 1.814 (.284) 1.263 (.144) .822 (.178) �1.366 (.247)
24s, 7r, � � 20 ms condition

.727u (p � .394) .906 (.011) 1.858 (.092) 2.533 (.371) 1.649 (.399) .385 (.267) 1.007 (.221) �.455 (.238)
7s, 2r, � � 20 ms condition

19.494n (p 
 .001) .804 (.016) 1.213 (.084) 1.157 (.100) .905 (.233) �.051 (.269) �.444 (.260) �.742 (.210)

Traditional SDT Analysis: Middle stimulus coded as signal
7s, 7r, � � 20 ms condition

6.211n (p � .013) .752 (.023) .962 (.105) 1.186 (.098) 1.430 (.303) .421 (.199) �.222 (.211) �.373 (.199)
7s, 7r, � � 80 ms condition

6.285n (p � .012) .961 (.007) 2.496 (.124) 2.368 (.186) .895 (.214) �.411 (.297) �1.375 (.282) �2.777 (.234)
24s, 7r, � � 20 ms condition

.188u (p � .664) .701 (.083) .747 (.339) 2.506 (.332) 4.637 (2.669) �.302 (.660) �.109 (.659) �2.202 (.681)
7s, 2r, � � 20 ms condition

18.222n (p 
 .001) .799 (.013) 1.187 (.065) 1.232 (.149) 1.074 (.263) .335 (.225) �.036 (.252) �.393 (.228)

FSDT Analysis
7s, 7r, � � 20 ms condition

2.898e (p � .235) .854 (.010) 1.491 (.061) 1.491 (.061) 1.000 .505 (.085) .071 (.078) �.141 (.079)
7s, 7r, � � 80 ms condition

4.754e (p � .093) .940 (.006) 2.198 (.073) 2.198 (.073) 1.000 .562 (.136) �.213 (.131) �1.407 (.158)
24s, 7r, � � 20 ms condition

.689e (p � .708) .940 (.006) 2.200 (.070) 2.200 (.070) 1.000 �.182 (.131) .076 (.131) �.853 (.141)
7s, 2r, � � 20 ms condition

8.210n (p � .004) .737 (.016) .895 (.071) .907 (.096) 1.025 (.259) .134 (.246) �.135 (.256) �.373 (.224)

Note. C � Conservative; N � unbiased; L � Lenient; e data fits the equal variance model; u data fits the unequal variance model; n neither model fits;
values presented correspond to the unequal variance model; CF neither model fit, and a convergence failure was obtained for the unequal variance case.
a For cases where the equal variance model fit d’ is reported. For all other cases, da is reported.
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millan & Creelman, 2005). However, in traditional ROC studies
using such bias manipulations, the signals and nonsignals are
unambiguously defined. That is, the observers know with certainty
how a false alarm and a miss are defined. By contrast, with fuzzy
stimuli, observers were informed that false alarms were “overes-
timations” of relative duration, and misses were “underestimations
(see Appendix).” It may be that it is difficult for observers to set
stable fuzzy criteria, possibly because they are being asked to
establish a crisp decision threshold based on a fuzzy evidence
variable. Indeed, an important issue for future theoretical work and
empirical research is to clarify the structure of the underlying

decision space in general and the construct of fuzzy criterion
setting in particular.

An Alternative Representation of the Decision Space

The decision space underlying traditional SDT shown in Figure
3 lends itself to an intuitive interpretation of d= and �. Indeed, it is
this intuitive interpretation that is arguably responsible for the
widespread use of these measures despite evidence that other
indices are more appropriate in many circumstances (e.g., See,
Warm, Howe, & Dember, 1997; Swets, 1996). However, it is a
logical possibility that fuzzy d= and �, computed by combining
degrees of membership across multiple stimuli, derive from a
decision space unlike that shown in Figure 3. The different cate-
gories may be represented as separate distributions, as shown in
Figure 8 (see Macmillan & Creelman, 2005; Wickens, 2002). The
multiple curves with multiple criteria are intuitively attractive as
representations of FSDT decision space because each curve can
represent different degrees of membership in the category “signal.”
In this representation the k categories are adjacent to one another
and there are k-1 decision criteria for an ordered set of categories
in which each stimulus type can be represented as a normally
distributed random variable.

However, we believe the structure shown in Figure 8 does not
represent a fuzzy decision space. First, use of multiple “fuzzy”
criteria would require a redefinition of the nature of the criterion
itself. This may prove necessary, but the computational procedures
described by Parasuraman et al. (2000) generate a single criterion
value, implying that there is a single criterion for a FSDT task.
There is evidence that a single fuzzy response bias score is sensi-
tive to manipulation of criterion setting (Stafford, Szalma, Han-
cock, & Mouloua, 2003). Second, the FSDT procedures require
summation across the stimulus membership categories, but in
traditional SDT tasks with multiple stimulus levels the categories
are preserved by the analytic method (for computational details see
Macmillan & Creelman, 2005; Wickens, 2002).

There are also theoretical reasons to reject the decision space
shown in Figure 8. In both traditional and fuzzy signal detection
theory the x-axis (evidence variable; see Figure 3) does not rep-
resent category membership (signal/nonsignal) but rather the
strength or intensity of the evidence variable itself. Category
membership is represented in the Gaussian distributions, and the
fuzziness is not defined by the magnitude of the evidence variable
but by the definition of the two categories represented by the two
distributions. Thus, the “true” category membership of a given
stimulus event is determined by the distribution from which it was

Table 11
Experiment 2: Z-Tests for Comparison of FSDT and Traditional
SDT for Each Observer in Each Condition

Observer Model compared Z

7s, 7r, � � 20 ms condition
FSDT vs. SDT, nonsignal
1 Unequal variance 1.49
2 — —
3 Equal variance 7.01�

4 — —
FSDT vs. SDT, signal
1 Equal variance 2.32�

2 —
3 Equal variance 7.42�

4 —

7s, 7r, � � 80 ms condition
FSDT vs. SDT, nonsignal
1 Unequal variance 0.74
2 Equal variance 1.21
3 — —
4 Unequal variance 3.86�

FSDT vs. SDT, signal
1 Unequal variance 0.87
2 — —
3 — —
4 — —

24s, 7r, � � 20 ms condition
FSDT vs. SDT, nonsignal
1 — —
2 Unequal variance 3.52�

3 Equal variance 2.54�

4 Unequal variance 1.78
FSDT vs. SDT, signal
1 Unequal variance 2.23�

2 Equal variance 1.97�

3 —
4 Unequal variance 2.79�

7s, 2r, � � 20 ms condition
FSDT vs. SDT, nonsignal
1 Equal variance 5.76�

2 Equal variance 2.88�

3 — —
4 — —
FSDT vs. SDT, signal
1 Equal variance 5.93�

2 Equal variance 3.30�

3 — —
4 — —

Note. The criterion for statistical significance was z
 � .05 � 1.96.
� p 
 .05. two-tailed test.

Figure 8. An alternative decision space for fuzzy signal detection theory.
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sampled. As Wickens (2002) noted, “. . . each actual event [stim-
ulus presentation] is drawn from one or another of these distribu-
tions. On any trial, only one of them applies.” (p. 12; emphasis
added). This observation confirms why the multiple category de-
cision space shown in Figure 8 may not be an adequate represen-
tation of fuzzy decision space. If category membership is repre-
sented in distributions, then Figure 8 implies that there are discrete
changes between fuzzy categories, so that the number of distribu-
tions approaches infinity for continuous fuzzy membership sets. A
more parsimonious argument is to retain the representation in
Figure 3, with the x-axis representing the strength/intensity of the
evidence variable, and the distributions representing noise (N) and
signal embedded in noise (S � N), as in traditional SDT. However,
for FSDT the sampling of the distributions would be different than
in traditional SDT.

As we observed previously, Wickens (2002) noted that only one
distribution may be sampled in traditional SDT. In FSDT, however,
this constraint is obviated. On any given trial, each possible distribu-
tion is sampled, depending on the degree of category membership. For
instance, a fuzzy stimulus value of .5 would result from sampling the
noise distribution to the degree .5 and sampling the signal � noise
distribution to that same degree. A major challenge for the future is to
identify ways to empirically sample the two different distributions to
different degrees based on fuzzy membership values. However, such
a representation would be consistent with the computation of a single
response bias value for a given pair of hit and false alarm rates. This
represents the next logical step in the elaboration of FSDT as a more
encompassing theory. In sum, the multicategorical representation
shown in Figure 8 seems to describe an underlying structure of a
decision space very different from that of the FSDT model. Indeed, it
should be noted that in the multicategorical (traditional) SDT task the
categories are crisp, that is, mutually exclusive. Hence, the similarity
of multiple categories to multiple degrees of category membership
breaks down when the formal characteristics of the models are con-
sidered.

Comparison of Traditional SDT and FSDT

In general, the FSDT analyses of the multicategorical stimulus and
response dimensions resulted in more instances of appropriate model
fit than the crisp analyses of the same data (but collapsing s and r into
two respective categories in the latter case). In addition, the relative
changes in the functions were more sensitive to manipulations of the
s and r dimensions in FSDT relative to the traditional SDT analyses.
By permitting intermediate values of “signalness,” FSDT facilitates a
more accurate representation of the underlying state-of-the-world.
This interpretation is underscored by the finding in some cases that the
traditional SDT model fit of data, and, therefore, the underlying
properties of the decision space implied by the model depended on
how the middle category was classified. If one assumes a stable
decision space underlying detection data, differences between the
SDT analyses as a function of how the middle category is classified
must represent an artifact of the bifurcating procedure itself. FSDT is
not as vulnerable to this problem (although it is dependent on the
validity of the function mapping the physical variable to fuzzy set
membership). FSDT may, therefore, be a particularly useful extension
of traditional SDT when multicategorical or continuous stimulus
dimensions are examined, or when the intrinsic characteristics of

stimuli do not permit precise assignment to one of two restricted
categories.

To be sure, FSDT is not a panacea, nor indeed does it neces-
sarily replace traditional (crisp) SDT in all circumstances. For
instance, the sensitivity estimated for the binary response condition
was substantially lower in the FSDT as compared to the SDT
analysis. However, the FSDT analysis for this condition did illus-
trate the cost of collapsing the state-of-the world into two mutually
exclusive categories: The loss of information resulted in a lower
FSDT sensitivity scores when compared to FSDT sensitivity
scores in conditions in which fuzzy responses were permitted. This
indicates that perhaps the traditional procedure of forcing stimuli
and responses into the 2 � 2 matrix shown in Figure 1 can distort
the sensitivity of the observer to stimulus variation. Of course, in
those cases in which the state-of-the-world is comprised of only
the two possible categories of signal and nonsignal, traditional
SDT remains an important tool for analysis. Indeed, in such
particular cases the more general FSDT actually reduces to the
traditional model (Hancock et al., 2000).

FSDT constitutes an advance of SDT because it reconsiders the
perspective on the state-of-the-world as it is defined in traditional
SDT. Traditional SDT forces membership into mutually exclusive
categories, a classification that may not always be and indeed is
probably not representative of many relevant task dimensions in
actual operational environments. FSDT provides a quantitative
model and procedures for incorporating the “fuzzy” nature of these
real-world stimulus dimensions. We do not argue that FSDT is
necessarily “superior” to SDT, only that it provides the more
comprehensive case and, thus, a tool for a more fine-grained
analysis of the state-of-the-world and, therefore, greater flexibility
in determining the optimal observer response for a given magni-
tude of a stimulus event. The data in the present work demonstrates
the viability of FSDT for modeling performance of multicategori-
cal stimulus and response dimensions, and to explore the effects of
variation in the structure of these dimensions. Note, however, that
FSDT conceptualizes the multiple categories of stimulus and re-
sponse differently than SDT. In the latter, the categories represent
levels of stimulus magnitude (strength of the evidence variable)
and levels of observer confidence in the judgment of the magni-
tude. However, FSDT conceptualizes multiple categories as dif-
ferent levels of membership in the category “signal” (s) and levels
of perceived membership in that set (r).

The theoretical advance offered by FSDT is in the more accurate
quantification of state-of-the-world and in the response (by a
human or a machine) to such events. It addresses the inherent
fuzziness in the state-of-the-world, the evidence variable, and the
subsequent response to it. With respect to the latter, FSDT pro-
vides formalized procedures of fuzzy analysis of response formats
heretofore analyzed as confidence ratings using crisp SDT proce-
dures. In these cases, rather than representing confidence levels as
separate criteria, FSDT represents them as differences in category
membership in the set “response” (r). This similarity was previ-
ously noted in the original FSDT publications (Hancock et al.,
2000; Parasuraman et al., 2000).

Note that as an extension or generalization of traditional SDT,
FSDT is a model of decision making, specifically the relation of
the stimulus structure and the response of the decision maker
regarding that stimulus. As such, it is a statistical model of per-
formance but it is not a model of cognition or perception. FSDT is
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thus not a new theory of human information processing. Rather it
is a theory of the relation between the structure of the stimulus and
response categories and how these are defined. It is no more a
theory of information processing than the traditional SDT from
which it was derived. Indeed, it is the relation of FSDT to SDT that
was a motivation for the current empirical effort: to determine
whether the assumptions that underlie SDT, and, thus, determine
the structure of the assumed decision space, extend to FSDT.

It may be the case that the cognitive and perceptual mechanisms
that drive fuzzy sensitivity or response bias may themselves be fuzzy,
but such a test is beyond the scope of the current work, and it is not
an element of the FSDT model itself. That is, like SDT, FSDT is
independent of any particular theory of sensation, perception, or
cognition. In this sense, FSDT differs from other applications of fuzzy
logic to psychology in which fuzziness is incorporated into perceptual
and cognitive mechanisms (e.g., Massaro, 1987).

The problem of aggregation. SDT and FSDT each provide
summary analyses across multiple trials. Thus, they capture the mac-
rostructure of overall responding and the reflections of the stable
performance state of each observer. What they do not do is reveal the
microstructure of each individual response or trial and, thus, the
sequential dependencies of each of these discrete responses or trials.
FSDT may represent one step toward the latter exposition in that it
provides a greater focus on the uncertainty of the everyday world and
the ambiguity within it. However, as we strive to understand both the
task-based and person-based facets of an individual’s performance,
the manner in which each discrete response is contingent upon the
events which precede it and prospectively that which the observer
anticipates encountering, represents an important ongoing challenge
to which FSDT looks to contribute.

Practical Applications

At the beginning of this work, we suggested that SDT was
perhaps the most effective quantitative analytic method in the
armory of the psychologist who ventures into the real-world.
However, it is important to reiterate that traditional SDT represents
only the selected case because it divides the world into necessarily
discrete states of “signal” or “noise.” We are all aware that the
world itself resolves over space and time such that uncertainty—in
the definition of the signal and not in the variability of the evidence
variable—covaries with the magnitude of each of these linked
dimensions of experience. For example, as an individual ap-
proaches an object, their recognition capacity often improves with
increasing proximity.

Similarly, as any individual has greater observation time, their
identification accuracy also often improves. Traditional SDT
largely fails to capture these informational dimensions because the
individual is constrained to respond after a certain time interval or
at a certain distance from the stimulus event. This obligatory
collapsing of the detection choice means that SDT is necessarily
limited. Given that SDT actually plays such an important role in
many critical real-world situations (e.g., Carlson, Gronlund, &
Clark, 2008; Gronlund, Carlson, Dailey, & Goodsell, 2009; Han-
cock & Warm, 1989), any methodological or quantitative improve-
ments are of vital practical and theoretical importance.

Here, we have explored and tested FSDT, which looks to
circumvent some of these constraints of SDT. This we have
done by using experimental conditions that in reality most favor

the SDT paradigm. However, we can postulate many practical
circumstances in which forcing people to “make” their decision,
when ambiguity still dominates, clearly represents a disservice.
We suggest rather, that in many actual performance circum-
stances an individual voluntarily seeks further sampling until
the “to-be-detected” object reaches a threshold of signal mem-
bership. If their response is also less constrained than the
traditional “yes-no” choice, additional value is again found in
the FSDT paradigm. To conclude, the great contributions of
SDT can be enhanced by the use of the broader FSDT model.
This expansion, elaboration, and improvement we have sought
to establish and advocate for here.
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Appendix

Payoff Instructions for Fuzzy Criterion Manipulation

Instructions for the Payoff Manipulation in
Experiments 1 and 2

Lenient Criterion

During this part of the experiment, you will receive (�10)
points for each correct identification, which means that you cor-
rectly estimated the relative duration of the square.

However, you will be penalized (�10) points for each missed
signal, which means that you underestimated the duration of the
square.

Also, you will be penalized a (�1) point for each false alarm,
which means you overestimated the duration of the square.

Conservative Criterion

During this part of the experiment, you will receive (�10)
points for each correct identification, which means that you cor-
rectly estimated the relative duration of the square.

However, you will be penalized a (�1) point for each missed
signal, which means that you underestimated the duration of the
square.

Also, you will be penalized (�10) points for each false alarm,
which means you overestimated the duration of the square.

Unbiased Criterion

During this part of the experiment, you will receive (�1) point
for each correct identification, which means that you correctly
estimated the relative duration of the square.

However, you will be penalized a (�1) point for each missed
signal, which means that you underestimated the duration of the
square.

Also, you will be penalized a (�1) point for each false alarm,
which means you overestimated the duration of the square.
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