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Signal Detection Theory
Instructors: J.L. Szalma and P.A. Hancock
As is often the case, Signal Detection Theory (SDT) emerged as a methodology to address a practical problem.  Engineers developing communications networks needed a way of determining the sensitivity of their signals in the presence of noise without the contaminating factor of biases in responding. Following its development for this purpose, it was adapted for application to psychology in the 1950’s by researchers at the University of Michigan (Peterson & Birdsall, 1953; Peterson, Birdsall & Fox, 1954: Swets, Tanner, & Birdsall, 1955; Tanner & Swets, 1954).  The theory had its greatest impact on psychology with the publication of an edited volume by Swets (1964/1988) and the now classic text by Green and Swets (1966/1988). These researchers realized not only that SDT could be used to evaluate performance by human detectors as well as electronic, but also that it could solve an old problem in psychophysics.  One of the limitations of classic psychophysical methods for determining both absolute and difference thresholds (e.g., method of limits, method of constant stimuli) was that the detection rate (percentage of signals—or differences between signals—detected) confounded the observer’s perceptual ability from their biases to respond ‘yes’ or ‘no.’ Thus, two observers could both detect signals with 80% accuracy, but their perceptual ability may not be similar.  One individual might make 5% false alarms, while the other person makes 50% false alarms.  Both are detecting the same number of signals, but the second person is doing so not because of a high level of perceptual sensitivity, but rather because that individual tends to respond ‘yes’ more often.  This problem with the threshold approach was due in part to treatment of perceptual sensitivity as a discrete state (see Macmillan & Creelman, 2005, for a discussion of discrete state theories). By contrast, SDT treats sensitivity as a continuous variable.
Signal detection theory is a statistical theory, and it bears a great resemblance to earlier decision theory work (Wald, 1953) and to the form of statistical decision theory commonly employed for hypothesis testing. Indeed, as you will see, the primary parametric measure of sensitivity bears some resemblance to Cohen’s d (Cohen, 1988) and to the t-test (Student, 1908).  Slide 6 of the PowerPoint presentation shows a representation of the decision space for a detection problem.  In this decision space the stimulus dimension is represented on the X axis and is referred to as the ‘evidence variable.’ 
As with any statistical theory, SDT rests upon several assumptions.  These are,
1) Unlike traditional psychophysical approaches, which treat observers as sensors, SDT recognizes that observers are both sensors and decision makers, and that these are distinct processes that can be measured using separate indices, sensitivity and response bias/criterion.

2) In making a decision regarding the occurrence of an event, an observer adopts a decision criterion that sets the minimum value of the evidence variable that is required for the person to make a ‘yes’ response.

3) Signals, both in the environment and as represented in the brain, are always embedded in ‘noise,’ or random variation.  In the environment this can take the form of acoustic noise (e.g., static) or any physical properties of stimuli that render the signal to be detected less salient.  ‘Noise’ in the brain occurs as a result of on-going neural activity in the sensory and perceptual systems.  
4) The noise that occurs is normally distributed
.  In the Gaussian equal variance model, the variance of the noise distribution is assumed to be unit normal (i.e., a mean of zero and a variance of one). 

5) When a signal is present, it has the effect of shifting the distribution upward along the scale of the evidence variable.  Thus, according to the Gaussian, equal variance model, signals change only the mean value of the stimulus but not its variability. As we will see, this assumption is often violated.

6) Perceptual sensitivity is independent of the criterion the observer sets (i.e., the response bias).  This is also a somewhat controversial assumption, as you will hear in class.
Consider the decision space on Slide 6 in light of this last assumption. Sensitivity is defined as the differences between the two distributions shown, the noise distribution (N) on the left, and the signal plus noise (S+N) distribution on the right.  The criterion one sets does not change when the S+N distribution changes its position along the evidence variable (X-axis). Thus, shifting the noise distribution by adding a signal changes sensitivity but does not change the response bias of the observer. The difference between the means of the two distributions is defined as d’, and the response bias, based on the criterion set by the observer, is the likelihood ratio, β. Note, however, that this assumption holds only for the Gaussian equal variance case.  That is, if addition of a signal changes the variance of the noise distribution as well as its mean, d’ and β do not represent accurate and independent measures of sensitivity and response bias, respectively.  For these situations other parametric and non-parametric measures have been developed.
From the readings you will have noted that there are multiple measures in SDT, and for both research and practice a difficult question is, “Which measures do I use?”  Most people will use d’ and β because these have filtered down into textbooks, and they will apply them without thinking about the validity of these indices for their data. Such applications can bias results and introduce needless error into performance evaluation. For instance, if one has a dataset in which it is known or suspected that the equal variance assumption does not hold, then d’ and β will provide inaccurate estimates and will not be independent of one another. Because violations of the equal variance assumption are common, Swets (1996) has recommended use of Az instead of d’ for sensitivity.  In regard to response bias, See, Warm, Dember, & Howe (1997) found that the index c is the best parametric measure for vigilance. For other applications, which measure is used should depend on whether the assumptions have been reasonably met and on the sensivity differences between conditions.  If the sensitivity across your experimental conditions are statistically equivalent, then any measure of response bias will do (Macmillan & Creelman, 2005).  However, if sensitivity is not different, then different response bias measures can give different results.  The index c has the advantage of symmetry, while β is asymmetric:  Lenient responding ranges from 0 to 1 but conservative responses range from 1 to ∞.  However, this problem can be solved by using the ln(β), which, like c, sets zero as the unbiased value, negative numbers are lenient response biases and positive numbers are conservative.
Receiver Operating Characteristics (ROC)

The assumptions of SDT can be evaluated empirically by construction of receiver operating characteristics (ROC) which are plots of proportions of signals detected as a function of the proportion of false alarms.  These are sometimes referred to as isosensitivity curves (see Macmillan & Creelman, 2005, p 10). ROC curves can be transformed to z-score units based on transforms from proportions using the normal distribution (here we see the manifestation of the normality assumption). If the Gaussian assumption is met the ROC is a straight line when it is in z-transformed coordinates. If the slope of this line is 1, then the data also meet the equal variance assumption. Slopes greater than one indicate that the variance of the N distribution is less than that of the S+N distribution (i.e., introduction of a signal suppresses noise variance). Slopes less than one indicate that the variance of the S+N distribution is greater than that of the N distribution (i.e., introduction of a signal increases the variance of the underlying distribution). Thus, the form of the ROC is determined by whether the data fit the Gaussian distribution and equal variance assumptions.  ROC analysis is therefore a powerful tool for understanding the decision space underlying a particular detection or discrimination task and for selecting the best performance measure for a particular detection problem.
“Non-Parametric” and Alternative Measures of Decision Making

The Gaussian assumption has proven more robust than the equal variance assumption.  Most data fit the Gaussian model or fit a distribution that can be transformed to the Gaussian distribution (Wickens, 2002).  Nevertheless, for cases in which the Gaussian assumption may not hold, non-parametric measures have been developed. The most prominent non-parametric measure of sensitivity is A’, originally developed by Pollack and Norman (1964). For response bias, the best measure is βd”, first developed by Donaldson (1992; see also See, Warm, Dember, & Howe, 1997).  These measures are based on the area under the ROC and do not require any assumptions regarding the underlying distributions of signals and noise.  However, as Macmillan and Creelman (1990; 1996) have pointed out, these measures are not really non-parametric in the sense that they are not distribution free.  They demonstrated (Macmillan & Creelman, 1996) that A’ follows a logistic distribution and are therefore not truly non-parametric (see also Pastore, Crawley, Berens, & Skelly, 2003).  However, it is the case that no explicit assumptions are required for use of these measures, and they can be useful in cases where observers make no false alarms.  When this occurs, one cannot use Gaussian measures because a zero proportion is undefined for these distributions.  “Non-parametric” indices are one alternative for such situations, although even these measures may not capture the subtleties of performance differences (Szalma, Hancock, Warm, & Dember, & Parsons, in press; and see also Parasuraman, Hancock & Olofinboba, 1997).  In this case, there are other decision theory measures that can be used that are based on Bayesian probabilities, and that are often used in clinical applications (e.g., Elwood, 1992).  These are positive predictive power (PPP) and negative predictive power (NPP).  Consider a representation of the proportion of correct detections and correct rejections,

p(H)= p(y|s); In English: The probability of a ‘yes’ response given that a signal has occurred.

p(CR)= p(n|ns); The probability of a ‘no’ response given that a non-signal (‘neutral stimulus’) has occurred.

These probabilities are a priori—we are estimating a probability after an event but before a response.  The decision theory measures of PPP and NPP turn these probabilities around and are posterior probabilities (i.e., Bayesian),

PPP= p(s|y); In English: The probability that a signal was presented given that a ‘yes’ response was made.

NPP= p(ns|n); The probability of that a non-signal was presented given that a ‘no’ response was made.

 In essence, PPP is the proportion of ‘yes’ responses that were actually correct and NPP is the proportion of ‘no’ responses that were actually correct. Recent evidence indicates that these measures can also be applied to more traditional signal detection problems such as vigilance (Szalma  et al., in press).
Fuzzy Signal Detection Theory

SDT is one of the most powerful theories in psychology. However, it is not without its limitations. In the SDT model, the state of the world is forced into crisp mutually exclusive categories (i.e., signal versus non-signal; old versus new; etc.), which may not be accurate representations of the true states of the world.  In many instances events possess properties of both signal and non-signal to varying degrees. This is not a case of a signal embedded in a small or large amount of noise, but rather a change in the nature of the signal itself. That is, the signal itself retains non-signal properties. Indeed, it is such blending that leads to uncertainty in decision making in many operational settings. Addressing such uncertainty requires modification of the traditional crisp representation to allow for degrees of membership in the signal and non-signal categories. Recently, Parasuraman, Masalonis, and Hancock (2000; see also Hancock, Masalonis, & Parasuraman, 2000) have accomplished this by combining elements of SDT with those of Fuzzy Set Theory, in which category membership is not considered mutually exclusive and stimuli can therefore be simultaneously assigned to more than one category. Thus, in Fuzzy SDT (FSDT) a given stimulus, or more formally, a stimulus selected at random from a distribution of stimuli, may be categorized as both a correct detection and a false alarm to different degrees depending on the relative levels of signal-like and non-signal-like properties. Implicit in this model is the assumption that signal uncertainty exists not only within the observer (a major insight provided by traditional SDT) but in the stimulus dimension itself. Initial evidence indicates that the FSDT model meets the Gaussian assumption and that the equal variance assumption is met in some cases but is as fragile in FSDT as in SDT (Murphy, Szalma, & Hancock, 2003; 2004). Similarly, FSDT has been shown to apply to vigilance tasks as well (Stafford, Szalma, Hancock, & Mouloua, 2003).  
Current Learning Objectives

You have learned the ‘basics’ of SDT in other courses, so the concepts of sensitivity, response bias, and their relations to hits and false alarms, should be familiar to you. The purpose for this unit is to assist you in deepening your understanding of this rich and widely applicable model of decision making.  You should come away from this unit with the realization that the typical textbook representations of SDT are very simple and ignore the development of other sensitivity and bias measures that have improved the utility of the model for use in real world and laboratory settings.  In essence, most pedagogical treatments of SDT only touch the tip of the iceberg. After this unit you should be familiar with the assumptions of the theory and the consequences of violating these assumptions and the ways that have been developed to deal with them (including the ability to recognize when SDT should not be applied and alternative measures used).  You should have an understanding of the difficulties inherent in establishing whether sensitivity and bias are truly ‘independent.’  You should also have an understanding of the basic assumptions, concepts, and procedures for application of Fuzzy Signal Detection Theory.  
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� Formally, the assumption is that the noise distribution is either normal or transformable to a normal distribution.





