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Expertise and Skilled Performance
Guest Lecturer: Dr. Karol Ross

Lecture Overview

· The nature and development of expertise
· Expert judgment and decision making in naturalistic settings

· Training and systems design to support expertise

· Neuroscience and skill acquisition 
This lecture surveys a broad area, though by no means all areas, of research and application in the area of skilled performance and expertise. The guiding assumption of this lecture is that expertise and skilled performance are domain specific—learned and practiced in context. The primary focus of this lecture is in the area of naturalistic performance, i.e., what actual skilled and expert performers do in their domains of practice, as opposed to laboratory studies of naïve participants. 
The Nature of Expertise
Characteristics of Performance

Experts function differently than others. Their abilities, be they cognitive or physical, “make it look easy” when they perform. The following characteristics have been compiled by researchers about practitioners as they perform in their areas of expertise (adapted from Phillips, Klein, & Sieck, 2004):
Perceptual skills – Experts have the ability to make fine discriminations. They see more in a situation than a novice by noticing cues a novice does not (Klein & Hoffman, 1993).

Mental models – Experts have rich internal representations of how things work in their domain of practice (Rouse & Morris, 1986). These mental models allow them to learn and to understand situations more rapidly (Ross, Battaglia, Phillips, Domeshek, & Lussier, 2003).

Sense of typicality and associations – Experts have a large repertoire of patterns. They recognize what is typical in a situation (Ericsson & Simon, 1993) and they recognize complex patterns. They also recognize when things are not going as expected, that is, when there is an anomaly or something is missing.

Routines – Experts know how to get things done (Anderson, 1983). They have a wide repertoire of tactics. They don’t just know about things; they know how to do things.

Declarative knowledge – Experts know more facts and details and have more tacit knowledge than novices do. Tacit knowledge is the operational knowledge inaccessible to consciousness. Much of expertise operates without conscious effort, and that tacit knowledge supporting expertise is not verbally encoded, nor easily articulated (Crandall, Klein, Hoffman, 2006).

Mental simulation – Experts run mental simulations to refine their course of action or to understand how a situation got to the point at which they found it (Klein & Crandall, 1995).

Assessing the situation – Experts spend more time than novices understanding the dynamics of the situation. Novices spend more time deliberating over the course of action (Lipshitz & Ben Shaul, 1997).

Finding leverage points – Experts can find leverage points in a situation and capitalize on them to implement innovative strategies (Klein & Wolf, 1998). Leverage points are opportunities for making critical changes at relatively low effort.
Managing uncertainty – Experts have a range of strategies for managing uncertainty in the field (Lipshitz & Strauss, 1997; Schmitt & Klein, 1996).

Understanding one’s own strengths and limitations (metacognition) – Experts are better self-monitors than novices (Chi, Feltovich, & Glaser, 1981; Larkin, 1983).
Stages of Development

A rule of thumb that is still generally referred to in the field of expertise research is that it takes 10 years of effective practice to develop expertise. As one develops in the cognitive arena, there are stages or levels of proficiency. Ross, Phillips, Klein, & Cohn, (2005) defined these stages as shown in the table below and then further developed the stage model of novice to expert development. The purpose of training is to move individuals from their current state of skill and knowledge to a higher state. What, then, are the stages of learning, and what do individuals know and do at each stage? Without a commonly recognized account of the stages along the learning continuum, we lack a roadmap with which to pinpoint where we are with a particular individual and where we’re trying to go. A great deal of research documents the nature of expertise and contrasts it to novice behavior—the two ends of the performance continuum (e.g., Chi, Glaser, & Farr, 1988; Ericsson & Smith, 1991; Feltovich, Ford, & Hoffman, 1997).  A much smaller body of research enlightens the nature of performance between these two endpoints. This research has generated and tested a stage model of proficiency that delineates knowledge and abilities at stages between novice and expert (Benner, 1984, 2004; Dreyfus & Dreyfus, 1986; Dreyfus & Dreyfus, 1980; Houldsworth, O'Brien, Butler, & Edwards, 1997; McElroy, Greiner, & de Chesnay, 1991). These two bodies of literature strongly influence our description of the levels of proficiency for learners in cognitively complex domains.

To understand proficiency we begin by describing the original stage model of performance developed by Dreyfus and Dreyfus (1980; 1986). The five-stage model describes performance at levels during the transition from novice to expert in ill-structured, cognitively complex domains. The model has been applied to training and instruction within domains such as combat aviation, nursing, industrial accounting, psychotherapy, and chess (Benner, 1984, 2004; Dreyfus & Dreyfus, 1986; Houldsworth et al., 1997; McElroy et al., 1991). Like tactical thinking, these domains demand that decisions be made quickly in environments that are complex, ambiguous, and dynamic. Further, skill can be acquired only through firsthand experience doing the task. Table 1 below presents an overview of our general stage model of cognitive skill acquisition. 

Expert Judgment and Decision Making in Naturalistic Settings

Tacit Knowledge and Expert Cognitive Processes

Experts and skilled performers use recognition-based cognitive processes to perform adroitly.  These cognitive processes are based on tacit knowledge, i.e., the knowledge is not verbally encoded or consciously accessed during performance. It is therefore very difficult for the very skilled or expert performer to explain how and what they are doing.  The Recognition-Primed Decision model (RPD) (Klein, 1998) was derived from field research. It is descriptive of what experts actually do in situations that are dynamic, uncertain, high-stakes, and time-pressured. The RPD Model states that when it comes to high-stakes, time-pressured decisions, people do not use “rational choice” methodologies; instead, they rely on their experience. An expert confronted with a situation is able to recognize that this situation is typical, an instantiation of a “prototype.” This prototype is a cognitive package that includes the type of situation this is, what to expect from the situation (expectancies), suitable goals, typical courses of action (COAs), and relevant cues. Once the expert has this prototype in mind, he knows what he’s facing and what to do next without going through elaborate analyses. Recognition of a situation prototype can and often does lead directly to action that involves no comparison of options, because the situation prototype is linked to a COA that the expert already knows will work. RPD is the type 
Table 1. The Stage Model of Cognitive Skill Acquisition

	Stage
	Characteristics
	How knowledge is treated
	Recog-nition of relevance
	How context is assessed
	Decision

making

	Novice
	Rigid adherence to taught rules or plans
Little situational perception

No discretionary judgment
	Without reference to context
	None
	Analytically
	Rational

	Advanced Beginner
	Guidelines for action based on attributes or aspects

Situational perception is still limited

All attributes and aspects are treated separately and given equal importance
	In context
	
	
	

	Competent
	Sees action at least partially in terms of longer-term goals

Conscious, deliberate planning

Standardized and routinized procedures

Plan guides performance as situation evolves
	
	Present
	
	

	Proficient
	Sees situation holistically rather than in terms of aspects

Sees what is most important in a situation

Perceives deviations from the normal pattern

Uses maxims, whose meanings vary according to the situation, for guidance

Situational factors guide performance as situation evolves
	
	
	Holistically
	

	Expert
	No longer relies on rules, guidelines, or maxims

Intuitive grasp of situations based on deep tacit understanding

Intuitive recognition of appropriate decision or action 

Analytic approaches used only in novel situations or when problems occur
	
	
	
	Intuitive


of cognitive process most often used by experts in the field. The experts’ knowledge base, training, and experience generally render them able to satisfactorily assess a situation, even if it is not exactly the same as previous situations encountered. Simply put, when the typical aspects of a situation are recognized, a plausible COA usually comes to mind. That initial COA is based on the expert’s recognition of aspects or patterns in the situation, and at times, the pattern of the entire situation. That recognition brings to mind associated, typical actions that are likely to work in that circumstance. Experienced decision makers then assess and refine that course of action by mentally simulating that solution. 

In situations in which RPD is applicable there is often no time to seek the optimal solution; all that is required is one that will work. This principle of accepting what will work rather than continuing to look for what is ideal is called “satisficing” (a term coined by Herbert A. Simon, 1957). Rather than comparing and contrasting several options simultaneously on a set of abstract evaluation dimensions, experts consider a single workable solution and examine potential flaws through the mental simulation of the situation. These findings have been generalized to a wide variety of tasks and specialties and have been replicated a number of times (Fallesen & Pounds, 2001; Klein, 1998; Pascual & Henderson, 1997). Forcing the consideration of several options can actually reduce effective decision making. Klein et al. (1995) showed that skilled decision makers generated a good COA as the first one they considered. Johnson and Raab (2003) replicated this finding and extended it, showing that when skilled decision makers abandoned their initial COA in favor of one they generated subsequently, the quality of that subsequent COA was significantly lower than their initial COA. Johnston, Driskell, and Salas (1997) showed that recognitional processes, now sometimes referred to as intuitive decision making, resulted in higher performance than analytical processes. These findings call into question the very rationale of the MDMP, which attempts to ensure good decision making by having planners generate multiple COAs and evaluate them analytically in order to find the best one possible. In reality, the commander and staff naturally produce a good basic COA after an initial assessment and then work to make sure it is satisfactory for the purpose. 

Cognitive Task Analysis

Because it is very difficult for experts to articulate what they are doing and how, methods have been developed to help the expert “unpack” what is happening during performance. There are a number Cognitive Task Analysis (CTA) approaches in use in the field. (See for example Crandall, Klein, & Hoffman, 2006; Schraagen, Chipman, & Shalin, 2000). A type of CTA associated with naturalistic decision making research is the Critical Decision Method (CDM) as our primary interview methodology (Hoffman, Crandall, & Shadbolt, 1998). CDM is an incident-based technique for eliciting knowledge from specific, non-routine events that challenge a person’s expertise. Using recollection of a specific incident as its starting point, CDM employs a semi-structured interview format with focused probes to elicit particular types of information from the interviewee. The types of information sought include the following:

· goals that were considered during the incident

· options that were generated, evaluated, and eventually chosen

· perceptual cues that influence sensemaking and judgments

· contextual elements critical to the decisions and judgments

· situation assessment factors and background knowledge relevant to particular decisions.

Training and Systems Design to Support Expertise

Developing Expert Cognition: Fidelity and Feedback

Cognitively authentic scenarios and facilitation of training (coaching and feedback) are key aspects of training that supports the development of cognitively-based expertise. Structured deliberate practice is motor skills. Practice alone without attention to reflection and form will not yield the same results. Simply playing a sport or engaging in other types of performance will not lead to expertise in a domain. Design of training and training systems must be based on the specific challenges and known performance attributes of domain experts. (See attached article on expertise in mine detection.) 
Making People Stupid

Technology, when poorly designed, can actually make people stupid and interrupt the process of developing expertise (Klein, 1998). When skilled and expert performers use information in a situation, they are looking for patterns, connecting information to existing mental models, and creating understanding of current situations. When system designs interrupt this process experts cannot perform and emerging experts have no chance to practice putting together information in their domain. This unintended effect can happen when too much data is provided, when people are disconnected from data and given “smoothed over” interpretations, or limit the practitioner’s ability to dig into the data when she chooses. New technology can make performance worse by taking the expert’s ability “out of the loop.” (See for example, Hoffman, Trafton, and Roebber, 2006). 
Neuroscience and Skill Acquisition


An emerging area of research is the blending of neuroscience and the study of expertise and skilled performance. Studies of athletes have provided major insight into how the brain performs skilled motor activities (Milton, Small, & Solodkin, 2004). Recent neuroscience research indicates that as a skill is being learned, the number of neurons dedicated and associated with its execution gradually decreases, adding a dimension of efficiency to the neural system. Research using imaging studies show that when elite athletes perform, their brains use fewer but more appropriate neurons (Hatfield & Hillman, 2001). Experts tend to exhibit activation in the visual and spatial portions of the cortex, whereas beginners display more diffuse and global activation. Other researchers have also observed that neural networks of elite performers may be structurally different from those just beginning to learn a skill (e.g., Milton, Solodkin, Hlustik, Crews & Small, 2003; Milton et al., 2004; Tracy et al., 2003). Milton et al. observed that professional golfers had significantly more activation in the parietal lobe, occipital cortex and dorsal lateral premotor cortex. Generally speaking, these data suggest that neuroelectric activation in the expert brain is more specific as compared to the beginner’s brain. 


This notion is consistent with research by Elbert et al., (1995) who illustrated that finger representations in the motor cortex become highly organized as skilled musical string expertise develops. Using magnetoencephalography (MEG), Elbert and his colleagues showed that the amount of cortical reorganization in the size of the somatosensory representation of each finger in the cortex positively correlated with number of years playing the instrument. Activation specificity has also been illustrated by the work of Deeny, Hillman, Janelle, and Hatfield (2003) that examined coherence
 between multiple brain areas and the motor planning region (Fz). Across the scalp and between the two groups, EEG coherence measures were almost identical, except between the T3 (verbal-analytic) and Fz (motor planning) electrodes in the alpha and beta bandwidths. Superior competitors exhibited a reduction in T3-Fz coherence, implying a reduction in task-irrelevant communication (i.e., a more streamlined network). 

When we compare these findings to the traditional three stage motor learning theory (cognitive, associative, and autonomous), we find correlates and explanations for the physiological findings. Fitts and Posner (1967) viewed acquisition of motor skill proficiency as concomitant with the individual no longer being consciously aware of the control of movement. Directing conscious attention to motor tasks is usually detrimental to performance once skill has been obtained both in motor and cognitive skills (e.g., Csikszentmihalyi, 1990; Klein, Wolf, Militello, & Zsambok, 1995). Neural correlates indicate activity is taken away from conscious cortical control and allocated to non-verbal automaticity for peak performance. 


Much of the literature on the acquisition of expertise addresses the concept of practice and specifically deliberate practice (Ericsson & Charness, 1994). Deliberate practice brings one to a stage of automaticity, characterized by minimal cognitive investment, fewer errors and development of a non-verbal internal model (Fitts, & Posner, 1967; Graybiel, 2000; Cavaco et al., 2004). “Thus the motor programs are stored in memory are not specific records of the movements to be performed, but a set of general rules, concepts, and relationships that can be called upon to solve situations as they arise” (Milton, 2005, p. 12). These findings lead us to believe that motor skills require “mental models”—a construct reputedly underlying complex, higher-level cognitive performance in much of the literature. 


Research utilizing electrophysiological recordings of brain activity provides an objective measure of cortical dynamics and further support this model of motor skill acquisition in terms of reductions in activity within the verbal-associative areas of the brain and decreased networking between task-irrelevant and task-relevant regions (Hatfield et al., 2004). Expertise in visuo-motor performance is not verbally encoded. With attainment of automaticity, the verbal-associative sections of the left temporal region appear to become task-irrelevant, while the visuo-spatial integration associated with right hemispheric activation becomes refined. Our observations and the findings associated with the RPD model lead us to conclude a very similar process is in operation when tactical thinking experts are engaged in performance—non-verbally encoded, task-relevant, and highly visually-based brain activity. 

Learning Objectives


At the end of this lecture you should be knowledgeable of the characteristics of expert performance and how expertise develops, particularly in the cognitive domains. You should understand the cognitive basis for expert judgment and decision making in natural performance settings. You will develop an initial framework for understanding how neuroscience is investigating the development of skilled motor performance and the role of neuroscience. You should be aware of the processes and advantages of understanding expertise in the development of training and systems. You will have key references to further your own study of any of these objectives. 
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Notes

This lecture will be supplemented by a PowerPoint presentation available upon request. Send requests for a copy to kross@ist.ucf.edu
� In order to assess the refinement of neural networks, one can employ measures of coherence via electrophysiological recordings. Coherence is a statistical measure of the degree of repeated linear correlation between the power spectral densities (frequency domain) of two separate electrodes taken from the same time series. Coherence values indicate the correlation of the amount of power present (or the regularity of the phase relationship) in a specific bandwidth between two different electrode cites. High coherence implies communication between areas, while low coherence indicates independence.
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