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Human-Automation Interaction 
Research: Past, Present, and 
Future

FEATURE AT A GLANCE:
Scientific research accesses 
the past to predict the future. 
The history of science is 
often best told by those who 
have lived it. Our purpose is 
to provide a brief history of 
human-automation interaction 
research, including a review of 
theories for describing human 
performance with automated 
systems, an accounting 
of automation effects on 
cognitive performance, a 
description of the origins 
of adaptive automation and 
key developments, and an 
identification of contemporary 
methods and issues in operator 
functional state classification. 
Based on this history and 
acknowledgements of the state 
of the art of human-automaton 
interaction, future predictions 
are offered.

KEYWORDS:
control theory, levels 
of automation, adaptive 
automation, operator functional 
state

By Peter A. Hancock, Richard J. Jagacinski, Raja Parasuraman, Christopher D. Wickens, 
Glenn F. Wilson, & David B. Kaber

Science is redolent with predictions 	
of the future grounded in rationales 
of the past, and some of these predic-

tions have been both prescient and infor-
mative (Bartlett, 1962; for a commentary, 
see Hancock, 2008). Those who have lived 
through the development and evolution 
of particular ideas are often well equipped 
to speculate about future impacts. The 
main purpose of this work was to capture 
the knowledge and opinions from a group 
of researchers who have been extensively 
involved in the field of human-automation 
interaction and especially the emergent form 
of adaptive automation, which replaced the 
one-time, static allocation procedures char-
acterizing a major part of human factors/
ergonomics (HF/E) science in the immediate 
post-World War II interval (e.g., Fitts, 1951).

In several ways, the present work builds on 
previous observations about complex system 
function allocation and human performance 
implications presented at an earlier annual 
meeting of the Human Factors and Ergo-
nomics Society (see Sheridan, Hancock, Pew, 
Van Cott, & Woods, 1998, for a report). The 
question at that time was whether function 
allocation could be prescribed in a rational 
manner, with several opinions for and 
against. What has occurred in HF/E science 
since that time is a resounding response of 
“for” from researchers and the development 
of approaches to adaptive automation; that 
is, rational assignment of system functions 
to human and machine on a real-time basis 
for workload management and performance 
optimization.

What follows are the differing perspectives 
of each researcher involved in the develop- 
ment of seminal theories and observa
tions on human-automation interaction,  

with a focus on adaptive forms. We begin 
with an evaluation by Jagacinski of the 
utility of theoretical models (in control) 
for describing human performance with 
complex automated systems involving 
cognitive tasks. 

This section is followed by an examina-
tion of human behavior implications of 
levels of automation by Wickens and identi-
fication of findings counter to conventional 
wisdom as well as approaches that may  
serve to sustain performance in varying 
automation conditions. The focus then 
shifts to the origins of adaptive automation 
and recounting of key developments toward 
human-centered automation, as covered by 
Hancock and Parasuraman. 

Finally, Wilson provides coverage of 
methods and issues in operator functional 
state classification for adaptive system 
control. The article culminates with a look 
forward and identification of some opportu-
nities and challenges in the area of human-
automation interaction, as addressed by 
Hancock and Kaber.

Comparison of Models of  
Decision and Control Tasks
By Richard Jagacinski

Important parallels can be drawn between 
behavioral models of decision tasks and con- 
trol tasks involving complex automated 
systems. A control task can be considered as 
a sequence of decisions of how to influence 
a dynamic system or process. The effects of 
each decision or action determine the context 
for the next decision in the sequence.

There are strong parallels between regres-
sion models of decision making and clas-
sical control models of tracking in aircraft-
piloting and car-driving tasks (e.g., McRuer 

f e a t u r e

A range of perspectives on 
human-automation interac-
tion may serve to sustain future 
performance in the area.
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& Jex, 1967; McRuer, Allen, Weir, & Klein, 1977), between 
Bayesian decision models and models of the optimal estima-
tion of noisy signals for vehicular control (e.g., Kleinman, 
Baron, & Levison, 1971), and between heuristic models of 
decision making and state space models of discrete control, 
such as the steering of large ships (e.g., Veldhuyzen & Stassen, 
1977).

Analogous to signal detection theory (e.g., Swets, 1982), 
control theory has permitted researchers to separate strategic 
from underlying perceptual and/or stochastic limitations of 
human performance in target acquisition and continuous-
tracking tasks in controlling complex automated systems (e.g., 
Jagacinski & Flach, 2003). However, unlike most common 
uses of signal detection theory, control theory does not typi-
cally categorize single actions or decisions in a sequence as 
correct or incorrect but, instead, describes the stability and 
efficiency of the extended sequence for reaching desirable goal 
states over time.

For example, how aircraft control dynamics influence 
the potential for oscillations or divergences from intended 
flight trajectories has been extensively studied. The redesign 
of aircraft that exhibit such tendencies may involve lowering 
control sensitivities, reducing lags, and/or filtering structur-
ally resonant frequencies from the pilot’s control movements 
(Committee on the Effects of Aircraft-Pilot Coupling on 
Flight Safety, 1997).

Related to the comments of Woods (Sheridan et al., 1998) 
on the historical function allocation problem, policy deci-
sions in sociotechnological systems can be extremely difficult 
because of the complexity of system dynamics (e.g., Forrester, 
1970). Such dynamics can also change with the introduction 
of new technology and lead to system instability.  
  Instances of people’s collective inability to reach consensus 
on recognizing and/or controlling vehicular, financial, and 
ecological instabilities before they become harmful, such as 
the 2008 crash of the U.S. housing market, suggest that the 
quantitative predictions and qualitative intuitions based on 
control theory need to be more effectively utilized to debate 
options and to inform system designers on policy decisions 
involving humans and technology. The study of manual 
control (e.g., Jagacinski & Flach, 2003) can provide a rela-
tively friendly introduction to relevant dynamic concepts for 
addressing such problems.

Trade-Offs in Human-Automation Interaction: 
Are They Inevitable?
By Christopher D. Wickens

A long-held conventional wisdom is that a greater degree  
of automation in human-in-the-loop systems produces  
both costs and benefits to performance. Here degree of auto-
mation is defined both by higher levels of system autonomy  
(more machine authority on the Sheridan and Verplank, 
1978, scale) and application to later stages of information 
processing (more automated action selection and execution 

authority on the Parasuraman, Sheridan, & Wickens, 2000, 
taxonomy).

The major benefit of automation is performance in routine 
circumstances. Costs result when automation (or the systems 
or sensors controlled by automation) “fail” and the human 
must intervene, as in the crash of Air France Flight 447 (see 
Wise, 2011). This degraded failure response is assumed to result 
jointly from complacency (operator overreliance on automa-
tion) and from elimination of the so-called generation effect; 
that is, when operators are not involved in generating action 
alternatives. Together, these two effects define the loss of situa-
tion awareness (SA) at Level 1 (complacency) and Level 2 (the 
generation effect: one has reduced memory for actions one did 
not generate), based on Endsley’s (1995) model.

Along with SA change, a second inferred variable is the 
reduction of workload that comes with greater degrees of 
automation, as humans are left with less to do. Thus the 
changes in these four variables (routine and failure perfor-
mance, SA, and workload), produced by changes in degree 
of automation imply an elegant, but perhaps overly simpli-
fied, model. This conceptual model has historic threads that 
reach back through Billings’s (1991) elegant work on human-
centered automation, through early empirical and theoretical 
work on accidents induced by flight deck automation (Wiener 
& Curry, 1980) and the broader realm of other industrial 
environments (Rasmussen & Rouse, 1981).

However, the elegance of this intuitive linking of four vari-
ables brings with it the danger of oversimplification based on 
empirical findings that the trade-offs are far from inevitable. 
In 2010, Wickens, Li, Santamaria, Sebok, and Sarter (2010) 
reported that increased degree of automation to improve 
routine performance did not necessarily produce degraded 
failure response. What features, then, can mitigate the loss 
in failure performance with higher degrees of automation? 
Discovering these features provides the key to establishing 
useful guidelines for human-automation interaction. Some 
hints suggest that effective intuitive displays can buffer high 
levels of automation from human performance costs when 
things fail, perhaps capitalizing on principles of ecological 
interface design.

For example, Kaber, Perry, Segall, McClernon, and Prinzel 
(2006) demonstrated that auditory and visual cuing of adap-
tive automation with supervisory control of a telerover served 
to improve operator performance and reduce decrements in 
SA attributable to out-of-the-loop unfamiliarity. A second 
source of mitigation may be effective training: training to 
“expect the unexpected” as well as training in understanding 
of automation logic.

The Foundations of Adaptive Automation in 
Physiological Theories
By Peter A. Hancock

The idea of having machines adapt to the cognitive and 
physical demands of users in a momentary and dynamic 
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manner (i.e., adaptive automation) is one of the more impor-
tant ideas in the history of human factors/ergonomics. It has 
served to propel the field forward from its static incarnation 
of function allocations, such as was represented in the now 
famous Fitts list (Fitts, 1951), into something that has now 
exploited the extensive advantages of the computational revo-
lution (Hancock & Scallen, 1996). However, the notion of 
dynamic adaptation itself was not really something new.

Indeed, the concept of adaptation was one that has perme-
ated the annals of biology, even before its most famous 
formalization by Charles Darwin. But in biology, adaptation 
is accomplished almost exclusively by changes in the organism 
itself. Typically, these changes occur in proportion to the life-
time of the individual, and, thus, gradually, each species itself 
changes. But in the natural world, change happens on many 
time scales. 

Can organisms change more directly in response to purpo-
sive elements in the environment? Although it is true that 
many animals use “tools” in the crudest sense of the word, the 
notion of orthotics being purposively produced by a species, 
which then itself subsequently co-adapts, is confined solely to 
human beings. Indeed, I would argue that this is one, if not 
the, central hallmark of humanity.

Formally, this co-adaptation occurs at a frequency that is 
derived from an integration of the respective time scales of 
change, as represented by variation rate in the organism and 
the tool, respectively. This characteristic interchange between 
humans and the machines they create, which I have elsewhere 
labeled the self-symbiotic species, is what makes human beings 
unique. Adaptive automation has served to take this, our form 
of hybrid development, one step further into the future.

Adaptation in human–machine systems was, from my 
perspective, first broached systematically at a behavioral level 
by Rouse, who sought to turn conflicting intelligences into 
cooperating ones (see Rouse, 1988). His work on the frustra-
tions of dynamic incarnations of the Fitts list and MABA-
MABA (men are better at–machines are better at)-like specifi-
cations began this important revolution, which is still contro-
versial and playing out (see Dekker & Woods, 2002).

My own approach to the question of adaptive aiding de- 
rived from work in physiological systems and a number of 
associated efforts at modeling processing architectures and 
operational characteristics (Hancock, 1980). Indeed, the 
central question of adaptation is precisely how such sharing 
and dynamic task reapportionment could occur. The overall 
genre of thinking owes much to the pioneers of the cyber-
netic revolution. The challenge of how to specify what task 
elements were shared, when they were shared, and how they 
were shared was one that was not easily solved. I was fortu-
nate to be able to work with my friend and colleague Mark 
Chignell on such issues. His computer-based insights meshed 
with my background in human biology as a basis for positing 
task load redistribution through analysis of observed physi-
ological and neurophysiological signals. Our first published 
work on this approach to adaptive automation emerged 

shortly afterward. For my own part, the publication was 
inspired by the seminal insights of scientists such as Bernard, 
Cannon, and Selye on stress-related regulation of central and 
peripheral nervous system operations (see Hancock, Chignell, 
& Loewenthal, 1985).

Others focusing on practical implementation have since 
advanced our original theoretical observations on such 
methods. These efforts led to and resulted in major research 
programs, including augmented cognition (Schmorrow, 
2005) and neuroergonomics (Parasuraman & Rizzo, 2007), 
which are founded on these principles (see Parasuraman & 
Hancock, 2004). 

Today, the partnership between humans and machines in 
complex systems is becoming ever more intimate. The signifi-
cant advances in recording and interpreting physiological 
signals, especially those from the active central nervous 
system, have rendered what was once only a theoretical 
concept into a practical field technology. Not only can tasks 
be parsed according to which partner might be best able to 
deal with demands on a momentary basis, but one can also 
use technologies to provide to operators much wider access to 
computer-based information.

Examples of such adaptive automation technologies in- 
clude the rotary pilots associate (RPA; see Miller and Hannen, 
1999, for an assessment), which provided Apache pilots with 
the capability to negotiate with automation on flight task 
allocations and intelligently identified critical operation infor-
mation to support performance. Thus, adaptation has now 
extended beyond the sharing phase to embrace a wider vista 
of augmentation, but in a true sense, this is adaptation at the 
“next level.”

In the ongoing marriage of mind and machine, the neuro-
physiological portal through which a fuller integration could 
occur was opened marginally two decades ago by some 
promising theoretical conceptions. The present generation is 
passing rapidly through that conceptual window. However, 
this race for a greater human-machine intimacy may be more 
than simply another step along the unique road of history. For 
if the present vector of self-destructive progress continues, it 
may be that this avenue of development is the one that holds 
the greatest (some would say, only) promise for salvation.

Tracing the History of Adaptive Automation
By Raja Parasuraman

Related to Hancock’s account, the view that automation 
should be designed and implemented in an adaptive manner 
can be traced back to Licklider (1960), an early pioneer in 
computer science, following on the heels of Fitts’s (1951) 
discussions of function allocation, as part of human factors 
science. In that era, automation was mainly applied to phys- 
ical functions. As the trend toward greater computerization 
of the workplace continued, however, the possibility arose for 
automation of decision making and other cognitive functions.
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Sheridan set the stage for the next development with his 
model of supervisory control, in which a human operator 
controlled a physical process through an intermediary com- 
puter (Sheridan & Verplank, 1978). A decade later, research- 
ers such as Hancock et al. (1985), Parasuraman (1987), and 
Rouse (1988) suggested that such systems could benefit 
human performance if the nature of the interaction between 
the human and the computer was adapted to task or contex-
tual demands.

Although these early conceptual and analytical efforts were 
important, what was missing was a body of empirical research 
that could test and validate the adaptive automation concept. 
Fortunately, funding for such research was initiated by the 
U.S. Navy, in the form of the Adaptive Function Allocation 
for Intelligent Cockpits (AFAIC) program in 1980, the basis 
for which was described in a technical report by Parasuraman, 
Bahri, Deaton, Morrison, and Barnes (1992). A key player in 
the development of that program was Michael Barnes, who 
has continued his interest in the adaptive automation concept 
to this day in his work on human interaction with unmanned 
vehicles (Barnes, Parasuraman, & Cosenzo, 2006). The AFAIC 
program led to a period of empirical research on the perfor-
mance benefits and potential costs of adaptive automation 
(for reviews, see Inagaki, 2003; Scerbo, 2001).

Empirical research on adaptive automation has demon-
strated its benefits with respect to mitigating, at least partly, 
some of the costs associated with human-automation interac-
tion, such as unbalanced mental workload (Hilburn, Jorna, 
Byrne, & Parasuraman, 1997), complacency (Parasuraman, 
Mouloua, & Molloy, 1996), and reduced SA (Kaber, Wright, 
& Sheik-Nainar, 2006). At the same time, many issues con- 
cerning adaptive automation remain to be resolved, including 
the evaluation of different methods for adaptation, the relative 
merits of system- versus user-based adaptation, and refine-
ment of neuroergonomic measures and algorithms.

Recent neuroergonomics research suggests that physiolog-
ical measures—such as transcranial Doppler sonography for 
cerebral blood flow velocity (Shaw, Parasuraman, Guagliardo, 
& de Visser, 2010)—electroencephalography (Christensen, 
Estepp, Wilson, & Russell, 2012; Wilson & Russell, 2007), 
and heart rate (Ting et al., 2010), may be sensitive to unpre-
dictable task load changes and useful for the application of 
adaptive automation in command and control tasks requiring 
information acquisition, analysis, and action implementation.

One the Use of Physiological Measures to 
Determine Operator Functional State in 
Implementing Adaptive Aiding
By Glenn F. Wilson

Adaptive aiding has been found to improve system perfor-
mance by providing automation when an operator needs it. 
Because the aiding should be provided only when required to 
help a compromised operator, it is critical that the functional 
state of the operator be continuously monitored, otherwise 

the “aiding” may not be provided when needed or could be 
provided at the wrong time, interfering with the operator 
and resulting in increased demands on his or her cognitive 
resources.

As Parasuraman mentioned, there is a need for additional 
studies on methods of implementing adaptive automation. 
Determining when to provide adaptive aiding is especially 
difficult in highly automated systems in which the operator’s 
role is primarily one of monitoring the system, as in advanced 
automated aircraft cockpits. In these situations, there is very 
little overt operator performance to observe in determining 
whether the operator could benefit from aiding. One method 
of determining when to provide aiding is to monitor the func-
tional state of operators using data from their physiology.

Previous research has shown that these physiological sig- 
nals can provide accurate estimates of operator functional 
state (OFS; Wilson & Russell, 2003a). This finding has been 
reported with regard to conditions such as mental work-
load. Brain, cardiac, and eye signals are particularly relevant 
features when deriving accurate estimates of OFS (Berka et al., 
2004; Wilson & Russell, 2003b). 

To accurately determine the functional state of the oper-
ator, several physiological measures are combined via a clas-
sifier. Various classifiers have been used to derive estimates of 
OFS, such as artificial neural networks, discriminant analysis, 
and support vector machines. The classifier is typically trained 
using data that represent the cognitive states of interest 
from each operator separately, or it is trained on previously 
obtained data from a group of similar operators. The trained 
classifier is then continuously provided with physiological 
data during task performance, which it uses to make estimates 
of the functional state of the operator. When the classifier 
determines that the operator requires assistance, the system is 
notified so that it can provide the appropriate automation.

As Miller and Hannen (1999) said of the RPA, the system 
provided pilots with the necessary information for effective 
flight control at critical times. This type of system requires 
embedding knowledge of the mission scenario (level of job 
demands) in the adaptation technology so that suitable aiding 
can be provided at any time during the mission.

Using these procedures, researchers have reported signifi-
cant improvements in complex task performance (Wilson & 
Russell, 2007) for various applications, including unmanned 
(highly automated) aerial vehicle control. These results 
suggest that physiologically determined adaptive aiding may 
be included in future systems. Improvements in the areas of 
sensors, classifiers, and computing speed support this devel-
opment.

Summary and Conclusions
Theories and principles of human-automation interaction 

and adaptive automation have come a long way since their 
origins in the 1950s and early ’60s. From concerns about  
the real-world application of static function allocation  
(Fuld, 1993) emerged the promise of a solution through  
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adaptive allocation. Barriers to the practical realization of 
such structures came through definitions of types and levels of 
human-centered automation along with empirical research on 
conceptual forms of adaptive automation.

Demonstrations of model-based adaptive automation and 
benefits for human performance, workload, SA, and so on 
motivated work on more precise methods of adaptation to 
operator cognitive and physical needs. Physiologically based 
approaches to OFS assessment and connections with methods 
of task redistribution set the stage for near-real-time operator 
aiding under workload. Methods of neurophysiological 
imaging and neurophysiological techniques were a focus of 
the Augmented Cognition Program (Schmorrow, 2005), and 
research results provided a boost for adaptive automation 
applications. The emergence of neuroergonomics (Parasur-
aman & Rizzo, 2007) as a major area of research and practice 
in human factors/ergonomics has also continued this trend.

Now we are moving from progressively greater individual 
and task-related diagnosticity for adaptive function alloca-
tion toward a fuller agenda of human-machine intimacy. 
The benefit of our history is an understanding of previously 
unpredicted relationships of cognition and automation that 
appear to be mediated by human-machine system interface 
design and specialized approaches to training. Indeed, with 
certain physical orthotics and prosthetics now resident in 
the human individual, as well as emerging brain-computer 
interfaces (BCI; energized by the medical community), we are 
beginning to move from the birth of such conceptions into 
their viable childhood. For example, BCIs have been devel-
oped for adaptive robotic system control whereby the system 
responds to the “thoughts” of the human (Gergondet et al., 
2011), which are mediated by workload states.

However, there remains a need to apply established theo-
ries (including control) to quantitatively predict optimal 
states of such human-machine symbiosis and provide a basis 
for ensuring complex dynamic system stability and perfor-
mance in a range of operating conditions. Human factors 
engineers can provide designers with guidance on how to 
develop effective and intuitive forms of such interfaces for 
preventing automation costs, as Wickens suggests, and how to 
develop effective training programs for addressing unknown 
operating circumstances. What the fully mature hybrid 
human mind and automated machine integration will actu-
ally look like and how it will function is the reality the next 
generation will see and live in.
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