[
Viicrocomputers in Civil Engineering 8 1 19981 175-198

An Intelligent Vehicle Highway Information
Management System

Shashi Shekhar,* Toneluh A. Yang® & Peter A. Hancock?

Computer Science Department, » Human Factors Research Laboratory, University of Minnesota, Minneapolis, Minnesota
55455, USA

Abstract: An [VHS (Intelligent Vehicle Highway Svstem)
information management system obtains information
from road sensors, city maps and event schedules, and
generates information to drivers, raffic controllers and
researchers. We extend the relational database to model
traffic information in a relational database by abstract
data rypes and triggers. Abstract data rypes are needed
for efficient modeling of spatial and temporal informa-
tion, which create inefficiencies in traditional databases.
We use monotonic continuous functions to map the
object locations to disk addresses 1o save disk space and
computation time. Model of spatial data is created to
efficiently process moving objects. We provide schema
for IVHS databases with the relevant abstract data types.
We also have a large sample of the relations needed to
model [VHS data. Several interesting queries are pre-
sented to show the power of the model. Triggers are
defined, using rule-definition mechanisms to represent
incident detection and warning systems. An efficient
physical model with MoBiLe access method is provided.

1 INTRODUCTION

We are designing a traffic information base for Intelli-
gent Vehicle Highway System (IVHS) application to
create a shared resource, efficient disk-based computa-
tion and integrity of data. As shown in Fig. 1, the infor-
mation stored in the [VHS database will be used by
transportation system designers for traffic modeling
and control. The same information will be used by
human-factors researchers to simulate driving condi-
tions in intelligent cars with headsup displays and on-
board computers. Efficient disk-based computation is
needed to detect collisions and traffic incidents. Spatial

access methods. rules and triggers. provided by the -

database system, will be used for efficient disk compu-
tation of incident-detection. One of the important ben-
efits a database may offer is the integrity of stored data.
Changes (deletions or additions) of maintenance work
on highways. for example, shall not leave any manage-
ment holes under the database's integrity constraints.

A geographical database is the major component of
an [VHS information management svstem. which
obtains information from different sources and sends
the processed information to different clients. The
sources may include traffic reports, scheduled traffic
events, and static information (e.g.. maps. incident
descriptions, etc.). The processed information may g0
to transportation system designers, drivers, traffic
controllers, psychological experimenters, etc. The data
sources include city maps. road maintenance sche-
dules. periodic sensor data from various locations, and
traffic reports. The data is characterized by its spatial
and temporal nature. Furthermore, sensor data leads to
high update rates. The clients of the database include

highway

e =

road maps,
- city maps,
coanstruction
schedule

N u%o{to s
\rescarchers

A,
1
AN
1
1

1

Fig. 1. Data sources and clients of an [VHS database.

Microcomputers in Civil Engineering 0885-9507/93/S06.00 © 1993 Elsevier Science Publishers Ltd

176 Shashi Shekhar, Toneluh A. Yang & Peter A. Huncock

drivers on the road. traffic controllers and transporta-
tion researchers. Drivers may be interested in finding
short and uncongested paths to destinations. Traffic
controllers may be interested in incident detection and
management as well as traffic-flow control. Research-
ers often wish to validate their models fe.g. traffic-flow
models. driver-behavior models) with live data from
SSNSoOrs.

Due to the diversity of traffic information, an IVHS
database requires special capabilities for solving
problems which the traditional database systems need
not consider.

First, geographical data such as highway construc-
tion blueprints and city maps comprise a large part of
the traffic data. An IVHS database should be capable
of representing, processing. and displaying static geo-
eraphical data. The buildings in the city are static and
do not have overlapping area; the sizes of the areas
occupied by buildings are comparable and do not vary
a great deal. The areas occupied are rectangular in
shape. with comparable lengths on the opposite sides.
The object population density is high near the city
center and declines with the distance from the city
center. Some cities have more than one city center,
which can be modeled as a linear combination of
simple cities with one city center. The database should
be able to store geographic objects by preserving their
geographical proximity.

Second, traffic is a dynamic entity, and it may be
modeled with a large number of timestamp
measurements. producing large volumes of data. The
macroscopic view of tratfic may raise issues related to
temporal databases. To simplify and focus our discus-
sion. we will explore the microscopic view of traffic by
examining individual vehicles in the traffic. Individual
vehicles move and change their locations creating a
sequence of updates to the database to update their
locations for future spatial queries. An IVHS database
must provide access methods to handle these updates
due to motion.

Database technology has evolved over the last two
decades in response to the needs of commercial data
processing, and is characterized by large record-orien-
ted. fairly homogeneous data sets, mostly retrieved in
response to relatively simple queries: point queries that
ask for the presence or absence of a record. and interval
queries that ask for all records whose attribute values lie
within given upper and lower bounds. These databases
are not able to provide reasonable performance for the
[VHS applications.

The transportation data must be modeled at two

levels: the logical level. presented to the user. and the

physical aspects that an implementer sees. Consider

the example where a spatial object te.g. a road intersec-
tion) is stored in a database by using the boundary-
representation approach. In this approach. a
two-dimensional region is represented as a collection
of edges, and edges are represented by their endpoints.
Three relations (regions. edges and points) may be
used to model the data. A relational database may be
designed with the following relations:

region: a pair (R, e) identifies a region R, and one
of its edges e,.

edges: a triple (e, p,,, p,) identifies an edge e, and its
two end points p,, and p,.

points:atriple(p,, x, y)identifies a pointand its coordi-
nates x, v.

The representation smashes as simple an object as a
square into parts. spread over different relations. and
therefore over the storage medium. The question
whether a region intersects a given line L is answered
by intersecting each of the edges of the region with the
line L. If the pair (R,, ¢,) in the relation region contains
the equation of the edge, the intersection between edge
e,and L can be computed without accessing other rela-
tions, but to determine whéther the intersection point
lies outside or inside the edge e, requires accessing the
relations edge and point, i.e., accessing different storage
blocks, resulting in many more disk accesses than the
problem requires.

Efficiency requires, at least. retrieving all the data
that defines a basic region such as square as a unit. In
addition, geometric properties may be used to answer
proximity queries more efficiently. A sample region.
such as a rectangle. can be represented by 8 para-
meters that define the coordinates of four corner point.
Alternatively, rectangles.may be specified by an enclos-
ing circle with common center, with the angles sub-
tended by each corner. The second approach takes 7
parameters (2 coordinates for the center of circle, five
for the radius and corner points). The negative answer
to many intersection queries can be computed very
efficiently by comparing the radius with the distance
between the line and the center of circle. In essence. if
geometric objects are merely considered logical enti-
ties. we fail to take advantage of the rich structure of
geometry. The physical design of a database must uti-
lize geometric properties for computation efficiency.

In recognition of the fact that modeling is insufficient
for spatial databases without efficient physical storage.
intense efforts to design data structures for spatial data
have been made in recent years. A number of spatial-
data access methods have been proposed to retrieve
objects which are n-dimensional points or solids. The
spatial access methods optimize queries to retrieve all

Anintelligent vehicle highway information management sysiem L77

points or solids enclosed in or overlapping with a given
search region. The proposed access methods include
R-tree. =" Grid Files."'**!"1¥ and other search
trees.” ' 11141519 However. these access methods were
designed with the assumption of static worlds with no
moving objects. Update rates were assumed to be
much smaller than search query rates. The object
shape. size and location distributions are assumed to be
random rectangles with a high degree of overlap,
characteristic of VLSI/CAD data. Due to random
object population. the methods rely on tree-structured
directories/indexes, which are balanced after each
update to keep the cost of search queries small.

In presence of high update rates due to moving
objects. traditional methods incur very high overhead
of maintaining the tree-structured indexes. Further-
more they are not able to use the population distribu-
tion information to simplify the access methods.
Grid-based schemes need large memory buffers to
contain their directories and may not preserve the
geographic proximity relationship. Hashing-based
schemes do not suffer the problem with memory
buffers. They. however. do not preserve proximity rela-
tionships among geographic objects.

We proposed a new access method called MoBiLe
Files (MOnotonic Bounded mapping in LEotard Files)
to provide an efficient access method for IVHS appli-
cations.™* The MoBiLe Files method uses the popula-
tion distribution of the static geographical data in an
[VHS domain as the mapping functions between the
geographical domain and the storage space. The usage
of population distribution information enables efficient
data access and storage. It does not have the problem
of directory structure maintenance, and most import-
antly, preserves the proximity relationship among
geographical objects.

The rest of the paper is organized in the following
manner. The requirements of an IVHS application are
discussed in Section 2. We present our [VHS database
schema in Section 3. Entities in an IVHS application
are presented first, and abstract data types are then
defined to model these entities. In Section 4, query
languages of the IVHS database are described and
sampie queries are presented. We discuss the mechan-
ism of integrating knowledge into an IVHS database in
Section 5. Access methods are discussed in detail in
Section 6. We describe the related literature and iden-
tify our contributions. We describe MoBiLe functions
and compare the proposed access method with major
families of traditional access methods by detailed cost
modeling and experimentation. The experimental
parameters, configurations, and the results are

described. Finally, we present our conclusions and

recommendations for future work.

2 REQUIREMENTS OF IVHS DATABASE

Five key characteristics distinguish [VHS data manage-
ment from the other applications:

1. Data from individual sensors represent a stream
of values, ordered by time of sensing. The values
are assessed by their ordering in time. Data
values associated with current and recent time
are used more often than are older data values.
The average value over time interval is often
computed.

. Many objects (e.g., sensor. buildings, roads) are
embedded in k-dimensional Euclidean space.
For example, the record may be considered to be
a point in attribute space. However, attribute
space is not Euclidean space, since the distance
between two points (e.g., two names) may neither
be meaningful nor satisfy the triangle inequality.

3. The objects are often accessed through their
location in space. For example, partial match and
orthogonal range queries are common in tradi-
tional applications. In contrast, queries for over-
lapping between two regions are more popular in
IVHS databases.

4. The shape of a typical spatial object may be fairly
complex. Although a record in a traditional data-
base may contain a lot of attributes, for searching
purposes, it resembles a point in the attribute
space. A typical spatial object. on the other hand.
may be a region of complex shape, and we may
need to reduce them to predefine primitives such
as points, edges, or triangles.

5. An IVHS data processing system needs to store
and process information traditionally repre-
sented via maps.'® Sample data include the Land-
sat image data bank.’ census data.>’ and a city
map of roads and buildings. Another important
set of data includes a schedule of important
events, such as a road maintenance schedule, and
an event schedule for major traffic sources
including stadiums, shopping centers, etc.

[89)

An important problem in designing IVHS data pro-
cessing systems is efficient physical data modeling.
Traditional data modeling techniques do not provide
an adequate means for dealing with IVHS information.
Most IVHS data must be qualified by the location
where it is valid, the time of observation and its accu-

racy.”® It is generally believed that current general

purpose databases are inadequate to deal with spatial
information mostly due to efficiency problems, and
partly due to lack of direct support for spatial and
temporal concepts.

|78 Shashi Shekhar, Toneluh A. Yang & Peter A. Huncock

Two semantic domains that are essential to dealing
with [VHS concepts, space and time. are provided by
the tormalism. Without excluding alternate views of
space and time. we provide a kernel set of spatial and
temporal concepts and operators. Based on spatial and
temporal logic. they allow one to state that a fact is true
at some point in time and in a particular place.

The modeling of spatial objects is divided into the
foHowing parts: representation of space, representation
of spatial objects, embedding objects in space, object
transtormations | translation. rotation), preservation of
Euclidean proximity relationships, and aggregation
operations.

The representation of space via a coordinate system
allows naming and reference to interesting parts of
space. For example. to retrieve roads under mainten-
ance in downtown Minneapolis, we need to identify the
span of the area named "downtown Minneapolis’. The
representation of objects allows us to model the shape
of interesting objects such as roads, buildings. and
vehicles. An embedding of objects in the space pro-
vides information about the space currently occupied
by the object. For example, to answer queries relating
to collisions between two vehicles. we need to examine
the overlap of space occupied by the vehicles. The
separation of object representations from their
embedding in space is helpful in simplifying the com-
putation of embedding-independent object properties.
For example, the volume of a vehicle can be computed
without the knowledge of its location. Using such trans-
formations as translation and rotation, we can repre-
sent the motion of a vehicle and compute new
embeddings.

Preservation of spatial proximity between object
pairs is needed to efficienctly answer proximity queries
like collision between vehicles. It reduces the computer
disk accesses needed to answer the queries by simplify-
ing the representation of the object needed to answer
most queries. Other frequent queries, such as finding a
path from the airport to a downtown hotel, a boundary
traversal to locate all objects close to downtown
Minneapolis. or sweep algorithms to scan all objects
-along a road, also dictate the physical model of spatial
objects.

Our formalization views the world as a collection of
entity instances. Information about individual objects
is captured via the set of attributes defining its pro-
perties. For example, the EE/CSci building is charac-
terized by its location, office hours, capacity and other
traffic-relevant attributes. Related individuals are
grouped into entities represented as a table with one
column for each attribute and one row for each indi-
vidual. All buildings are grouped in one table. All roads
may be grouped in another table.

We classity the entities into two classes: materialized
and virtual. M .ierialized entities are stored in the data-
base. Virtual cntities are not stored. but can be com-
puted from the stored entities. For example, an
intersection is a virtual entity. Given the identification
of intersection in terms of the roads which meet there.
interesting properties (e.g., location) of individual inter-
sections can be computed.

Spatial and temporal aspects of data are modeled via
a set of data types which specify the spatial and tem-
poral attributes and operations. The space is modeled
via a rectangular coordinate system. Objects are
modeled approximately by a collection of primitive
objects, which include rectangles and rectangular
solids. The embedding of objects in space i~ modeled
by the coordinates of the center of the objec’ Transla-
tion and rotation operations are suppc:ied and
modeled by altering the values of relevant att. " utes of
the objects. representing the new embedding. “roxim-
ity relationship is preserved via the MoBiLe mapping
function, which determines the disk address of an
object from its spatial coordinates. The mapping func-
tion is monotonic and continuous to preserve prox-
imity relationships. The boundary traversal and other
algorithms are supported efficiently by the mapping,

Consistency among the stored data is specified via a
set of integrity constraints that identity the constraints
among values for attributes of individual objects. For
example, the office hours for EE/CSci buildings may
be 8 to 10 h per day (not typical of many Computer
Science Departments!). The areas occupied by two
independent buildings are non-overlapping,

Animportant constraint in defining the formalism has
been the desire to implement itin an extensible database
such as Postgres. Postgres provides a template data base
which can accept user-defined data types and operators
to model IVHS applications. We are implementing the
formalism on Postgres version 3.0 in a Unix environment
on Sun Sparc machines using C and Lisp. Graphic inter-
face for the map data is provided from the Xfig and Pic
tools. The purpose of the experimentis to identify waysto
overcome the limitations of traditional database systems
in areas of efficiency, modeling and user interface.

3 DATABASE SCHEMA: REPRESENTING THE
ENTITIES IN THE TRAFFIC WORLD

A database schema models application domain as a
collection of entities with attributes and the rela-
tionships among the entities. To represent a domain
efficiently, several data models have been proposed.

~ Among them are the network model, the hierarchical

Anintelligent vehicle highway information imanagement syseem 179

model. the relational model. the entity-relationship
model. the functional model. the semantic model and
the object-oriented model. In addition. variants and
extensions of the above models also exist. The exten-
sible relational model.” =" for example. has been a main
research area since the emergence of the relational
model.

We chose an extensible relational database manage-
ment system. Postgres.- "= to represent the schema of
the IVHS database. It provides an application database
designer with the ability to model both the semantic
and the procedural aspects of an application domain.

The choice of model was dictated by the following
considerations:

I. The query language should provide commands
for defining new types and operations. Database
designers can define domain-specific abstract
data types with the commands to model the
application domain entities.

2. The model should support rules. Rules makes the
creation of triggers/demons possible, which are
central to processing such events as collision
detection and accident monitoring.

3. The model should allow inclusion of new spatial
and temporal indexing methods for efficiency
and for tailoring to the application-specific
computations. The IVHS database domain, for
example. contains geographical objects. Since
geographical objects usually contain multi-
dimensional attributes (e.g., the X and Y coordi-
nates representing locations, or the rectangle
representing an area), the traditional one-dimen-
sional accessing schemes widely used in commer-
cial applications are not appropriate for
processing geographical data. It is important for
the performance of a IVHS database to have
specific access methods for representing and
accessing geographical objects. We have created
a powerful spatial access method called MoBiLe
Files, which are capable of mapping from objects’
geographical locations to the appropriate physi-
cal disk location, based on the population density
of the domain. As will be shown in Section 7,
MoBiLe Files perform well in terms of both disk
space and computing-time usage. With the define
index command provided by POSTQUEL. we
are able to build the MoBiLe File access method
into the IVHS database.

The first step of creating an extensible database
application is to model the entities in the application
domain as abstract data types {ADTs). An ADT con-
tains attributes and operators specific to the type. A
circle, for example. contains a center and a radius. A

circle can be modeled as an ADT containing two attri-
butes: a center coordinate (centerX. centerY i and a
radius. In addition. operations such as ‘get circle cen-
ter (circle). -get_circle radius (circles. ‘circle equal
{circlel. circle2) may be defined for the efficient
manipulation of circles. An operation is usually defined
as a function taking one or more parameters. The
circle_equal’ operation, for example, is a function
taking two circles and returning a boolean value (equal/
unequal or True/False).

The entities existing in a IVHS database such as
buildings, vehicles, etc. can be modeled as ADTs. In
the database model. ADTs correspond to npes and
relations. The commands define rvpe, define C function,
define function, define operator. and create were used
for the creation of abstract data types. The entity vehi-
cle. for example, was modeled in the database as con-
taining five attributes: ID. name, type. box. and
safety_envelope (see the vehicle relation table in the
Appendix for examples). An entity is defined in such a
way that the defined attributes and operations are
useful for modeling the application domain. One of the
purposes of IVHS databases is to detect collision, thus
a vehicle contains the attributes "box’ and ‘safety enve-
lope’. As another example. the entity ‘building’ contains
five attributes: building ID. building name. business,
box. and schedule. Users may query the schedule of a
particular building or jointly query how many buildings
have business hours falling within a particular time
segment (e.g.. 1200-1600 h on 24 Dec).

3.1 Entities

We model the sample IVHS data with the following
entities: vehicle, building, traffic_sign, traffic_area.
traffic_location, sensor. road, bridge. congestion, colli- -
sion, and event. Each of the entities is shown as a table
in the Appendix. Each table contains several columns
representing attributes of the entity. Each column has a
type, which is offered when building an entity into the
database. The entity vehicle. for example, could be
built into the database using the following command.

create vehicle (ID = integer. name = string, type
=TYPE box = string, safety_envelope = string)

The type of each attribute appears after the *="sign. A
type specifies the domain of a column. Built-in types
such as integer, character string are directly specified.
The application-defined types such as box, lines,
points, absolute time, etc., which are described in the
next section, are represented using the keyword TYPE.
The "type’ column of a vehicle relation. for example.
has type box. This means a vehicle is represented as a
rectangle containing four corner points. This kind of

180 Shashi Shekhar, Toneluh A. Yung & Peter A. Hancock

MER (minimum enclosing rectangle) representation is
appropriate for collision detection by checking box
overlapping. The function box overlup is an operation
specific for the ADT box. It takes two boxes as para-
metersand returns aboolean value. To check ifa vehicle's
enclosing rectangle overlaps with a building’s enclosing
rectangle. we could issue the following function call
inside a query: box_overlapivehicle. box, building. box .

3.2 Data types and operations

The semantic domain of a traffic information system
can be classified into two classes: the spatial (geogra-
phical} domain and the temporal domain. The spatial
objects are modeled with entities such as points, line
segments, paths and boxes. The space is modeled by a
coordinate system to embed objects in space. The
temporal domain is modeled by time point (absolute
time), time interval, periodic time {e.g.. every Wednes-
day. every day at 0900 h. etc.), and schedule. The
spatial and temporal classes are modeled as types and
are used together with the primitive types to specify the
tvpe of domain of columns in a relation.

Spatial data types include point, box, Iseg (line seg-
ment), and path. Box, for example, is used in the rela-
tions vehicle, building, and traffic area to specify the
extent of the entities. The box attribute specifies the
extent of area covered by a vehicle or building. The
box attribute is useful for collision detection. As
another example. the tvpe /seg and path is used to
represent road and bridge. which is either represented
as a line segment or as a combination of line segments
(path).

Temporal data types contain abstime (absolute
time), reltime (relative time), rinterval (time interval),
wetime (wild card time), winterval (wild card interval),

and schedule. Weinterval. for example. is used to define
the relation construction. while schedule is used to
model the business hours of a building in the butlding
relation. Rush hours can also be modeled using the
winterval data tvpe. '

Data types and their definitions are shown in Table 1.

While -absolute time/interval is self-explanatory,
'wide card time/interval’ needs some explanation.,
Frequently. in a real-world application. a user needs to
specify a generic time or interval without specifving the
date or month. The business hours of a building, for
example. are usually represented as generic time inter-
vals (e.g., Mon.-Fri. 0800 h to 1600 h, Sat. and Sun.
1200 to 1500 h). Wild card time/intervals | wctine,
winterval) serve the need of specifying a generic time/
interval or schedule. It is defined using the wild card
symbol 2. which matches all values for any fields tday.
month, hour:minute:second. vear) in a time expres-
sion. A time expression has the following format:
‘month day hour:minute:second vear'. If a user speci-
fies a time expression using the ? symbol as follows (77
16:00:00 19917, ~22 20:00:00 19917, the user tells
the database to look at every winterval 1600 h to 2000
within the year 1991, regardless of the dates. T he follow-
ing sample query specifying a generic time interval.

query # 1: All buildings near a camera location which
generated traffic during 1600-1800 hin 1991.

retrieve (building. name)

from b in building, ¢ in sensor

where c.class ="camera”

and near(b.box, c. point, 3)/*e = 3 miles */

and in{end(b.otfhrs), (*?716:00:00 1991~ =7
18:00:00 19917)).

The Define type command is used to build types into
the database. The spatial and temporal data types are

Table 1
Data types
Name Detinition

Spatial rvpes

point Dara point with two coordinates (. y)

box Two dimensional rectangle {represented by four corner point)

Iseg Line segment (represented by two end points)

path Curve approximation by a variable length array of line segments
Temporal nvpes

abstime Time instant {vear. month. date. and day-time)

reltime Relative time instant with respect to now

tinterval Time interval (starting abstime, ending abstime)

wctime Absolute time specification with wild card and defaults

winterval Time interval (starting wetime, ending wctime)

schedule A list of wintervals

An intelligent vehicle highway information management svstem 181

depicted in Fig. 2 along with a sample relation, build-
ing. The upward arrow points to the type specifier for
the particular column in the relation. The columns with-
outupward arrows have primitive types suchasinteger or
character strings.

Each data type has a set of operations defined for
easy and efficient use of the data type. The box data
tvpe. for example. has the following operations:
box overlap(), inside(). box center(), passesVia(),
near(), enclosure(), and adjacent(). The same opera-

tion may take different parameters. The operation
near(). for example. has four different parameter pairs:
point/box. box/box. Iseg/box. and path/box. Although
having the same name, each individual operation is
actually defined differently; however the user does not
need to worry about the details. This is one of the
strong features of abstract data types.

Operations for spatial types are listed in Table 2, and
temporal operation are in Table 3. Operations are
defined for each data type using either define C func-

ADT
spatial temporal
box point Ppath Iseg abstime reltime tinterval wctime Wwinterval schedule
building: id buisiness box use-hrs |
Fig. 2. Traffic domain data types.
Table 2
Spatial operations
Return type Name Meaning

boolean box_overlap(box, box)
boolean inside(point. box)
boolean on_ppath(point. path)

box box_center(box)

integer pointdist(point, point)
boolean inside(box, box)
boolean passesVia(path.box)
boolean near(point, point.e)
boolean near(point,box.e)
boolean near(box.box.e)
boolean near(lseg,box.e)
boolean near(path, box,e)
boolean intersect(lseg, Iseg)
boolean intersect(path.iseg)
boolean intersect(path. path)
point intersection(lseg, Iseg)
point intersection(path. Iseg)
point intersection(path. path)
box , enclosure(box, box)
box enclosure(path)

box enclosure(point, box)
Iseg lineseg(point, point)
boolean adjacent(path.box)

Test for overlapping boxes

Test if point is in the box

Test if point lies on path

Return center point of box

Distance between 2 points

Test if a box is inside the other box
Test if a path intersects box boundaries
Test if pointdist(point, point) < e

If distance between two arguments < e
If distance between two arguments < e
If distance between two arguments < e
If distance between two arguments < e
Test if two line segments intersect
Test if path intersects Iseg

Test if path intersects path
Intersection point

Intersection point

Intersection point

Smallest box containing two boxes
Smallest box containing the path
Smallest box containing box and point
Straight line joining two points

Test if path adjacent to box

182 Shashi Shekhar, Toneluh A, Yang & Peter A. Huncock

Table 3
Temporal operations
Rerurn nvpe Nume Meuning
abstime intervalstart tinterval) Start instant of tinterval
abstime intervalend(tinterval) End instant of tinterval
abstime timemilabstime. reltime) Subtract time A
abstime umenow! Returns to current time
boolean abstimeleabstime |, abstime 2 Test if abstimel < =abstime2
boolean reltimele(reltime | . reltime2) Testif reltime]l < =reltime2
boolean inintervallabstime, tinterval) Test containment
boolean intervalovitinterval, tinterval) Test overlap
boolean intervalct(tinterval, tinterval) Test if one tinterval contains another
abstime wc2abs(wctime) Abstime by copying values for *?" fields from timenow |)
boolean timelelwctimel. wetime?2) Test if wetimel < = wctime2 ignoring wildcard valued fields
boolean in{wctime, weinterval) Test containment
boolean overlapwcinterval. weinterval) Test overlap
wctime start(wcinterval) Start instant of wcinterval
wctime end(wcinterval) End instant of wcinterval
wctime timemi(wctime. reltime) Subtract time A
boolean in(wctime, schedule) Test containment
boolean in(winterval, schedule) Test containment
boolean overlapischedule, schedule) Test overlap
wctime startischedule) Start instant of wcinterval
wctime end(schedule) End instant of wcinterval
integer average_overtiattribute. tinterval) Average of attribute over tinterval
schedule subschedule(schedule. winterval) Extract subset of schedule (e.g.. Monday schedule. or April

schedule)

tion or define POSTGRES function commands. Opera-
tions provide access to data types. Type-specific
operations are required for efficient and easy data
manipulation.

4 QUERY LANGUAGE OF THE IVHS DATABASE

Once the application database is created. users can use
the types and functions together with the data access
commands to retrieve or update information stored in
the database. '

The query langauge includes commands defining
new types and functions not available in traditional
database language like SQL or QUEL. These com-
mands include define type, define function, define rule,
define index, and define operator. Once a function is
defined, it can be used in the queries. The database
run-time system will automat