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Signal detection theory (SDT) assumes a division of objective truths or "states of
the world" into the nonoverlapping categories of signal and noise. The definition
of a signal in many real settings, however, varies with context and over time. In
the terminology of fuzzy logic, a real-world signal has a value that falls in a range
between unequivocal presence and unequivocal absence. The definition of a
response can also be nonbinary. Accordingly the methods of fuzzy logic can be
combined with SDT, yielding fuzzy SDT. We describe the basic postulates of
fuzzy SDT and provide formulas for fuzzy analysis of detection performance,
based on four steps: (a) selection of mapping functions for signal and response,
(b) use of mixed-implication functions to assign degrees of membership in hits,
false alarms, misses, and correct rejections; (c) computation of fuzzy hit, false
alarm, miss, and correct rejection rates; and (d) computation of fuzzy sensitivity
and bias measures. Fuzzy SDT can considerably extend the range and utility of
SDT by handling the contextual and temporal variability of most real-world sig-
nals. Actual or potential applications of fuzzy SDT include evaluation of the per-
formance of human, machine, and human-machine detectors in real systems.
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end in doubts; but if he will be content to begin
with doubts he shall end in certainties.

- Francis Bacon, The Advancement
of Learning (1605, bk. 1, v. 8)

INTRODUCTION

A . A = 0. This seemingly irrefutable math-
ematical expression asserts that a statement
and its opposite can never coexist. Something
either is or is not. A tumor is either cancerous
or benign: a new car is either reliable or faulty;
a politician is either honest or dishonest, and
so on. Confidence in the truth of this mathe-
matical expression and of these representative
statements pervades both academic and every-
day thinking.

A little reflection reveals that although the
logical expression is often true. it need not al-
ways be true. After all, tumors, cars, and politi-
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white. To cope with this possibility, Zadeh
(1965) developed fuzzy logic, sometimes sim-
ply called fuzzy (Kosko, 1993, 1997). Fuzzy
logic allows the possibility that the intersection
of A and A is nonzero. Is it or isn't it? The
truth lies somewhere in between. To the extent
that an event is somewhere in between, forcing
its categorization into nonoverlapping sets of
black and white can result in the loss of useful
information and less sensitive analysis. Rather,
if we follow Bacon's admonition to "begin with
doubts" and express those doubts mathemati-
cally in fuzzy terms, then the analyses that fol-
low may very well "end in certainties."

If we are doubtful whether a given event is
a member of a particular category or not, how
can we reach meaningful decisions and take
appropriate actions based on our knowledge of
the properties of that category? To return to
our examples, the tumor needs to be operated

Address correspondence to Raja Parasuraman, Cognitive Science Laboratory, Catholic University of America, NVashington,
DC 20064; parasuraman@acua.edu. HUMAN FACTORS, Vol. 42, No. 4. Winter 2000. pp. 636-659. Copyright O 2000,
Human Factors and Ergonomics Society. All rights reserved.

Parasuraman, R., Masalonis, A.J., & Hancock, P.A. (2000). Fuzzy signal detection theory: Basic postulates and formulas for 
analyzing human and machine performance. Human Factors, 42 (4), 636-659.



FUZZY SIGNAL DETECTION THEORY

on. the faulty car returned to the dealer, the
politician voted out of office. Is a fuzzy charac-
terization of events a recipe for indecisiveness
and inaction? Not necessarily.

As we demonstrate in this paper, fuzzy logic
can be combined with a well-known methodol-
ogy for analyzing decision making: signal detec-
tion theory (SDT). The result, which we term
frzzy SDL allows for a broader and potentially
more powerful analysis of decision-making per-
formance than do conventional methods. More-
over, as we shall show, use of fuzzy SDT can
avoid the possibility of erroneous conclusions
that may arise from the application of standard
SDT to situations in which signal definition is
fuzzy.

SDT was initially developed to quantify the
performance of electronic receivers for detecting
noisy radio signals (Peterson, Birdsall, & Fox.
1954). It was later extended to describe human
detection of threshold-level sigrnals (Tanner &
Swets, 1954). Green and Swets ( 1 966) describ-
ed the modified theory in a landmark book
that led to widespread application of SDT (in
psychology and related disciplines) to a variety
of perceptual and cognitive tasks involving
decision making (Swets & Pickett, 1982).

SDT has been shown to provide indepen-
dent measures of the bias and the accuracy of
decision outcomes, thereby granting it many
advantages over competing theories and com-
putational methods. such as high-threshold
theory (MacMillan & Creelman, 1991). Anoth-
er advantage is that SDT can be used to analyze
humran, machine, or joint human-machine per-
formance, thus providing a common metric to
describe diverse aspects of detection perfor-
mance in many application domains (Parasur-
aman, 1985; Parasuraman & WVisdom, 1985:
Sheridan & Ferrell, 1974; Sorkin & Woods, 1985:
Swets, 1996).

This well-established theoretical approach is
based on a division of objective truths, or states
of the world, into one of two nonoverlapping
categories: signal or noise. SDT also typically
(but not always) assumes binary responses made
by the human or machine observer; for exam-
ple, "yes, a signal is present," or `no, a signal is
not present." Traditional SDT requires the map-
ping of environmental events or sources of evi-
dence into two categorical states of the world.

As our opening examples of various events and
states indicate, such mapping is often fuzzy
rather than exact. The question 'What is a sig-
nal?" does not usually arise in laboratory stud-
ies, The exception is when the experimenter is
interested in examining the effects of uncer-
tainty regarding some aspect of the signal, such
as its duration, starting time, frequency, and so
on. WVe discuss the general problem of uncer-
tain signal detection (Tanner & Birdsall, 1958;
Green & Swets, 1966) in relation to fuzzy
SDT in a later section of this article.

In the laboratory, the signal is whatever the
experimenter defines it to be. In a perceptual
experiment on visual discrimination, for exam-
ple, the signal may be defined as a line oriented
at 90°, whereas lines with orientations of
O_80c are defined as nonsignals or noise. A
researcher studying recognition memory may
define a signal as a face that has been shown to
the participant during a prior study period and
other previously unseen faces as noise.

In most such laboratory studies of percep-
tion, memory, and cognition, the categorization
of a physical event as signal or noise is fixed. In
contrast, in most real settings the definition of a
signal is often context-dependent and varies
with several factors. Real-world signals are
fuzzy. For example, a sonar operator trying to
detect the electronic signature of an approach-
ing submarine on a visual display terminal has
to look for a line with a luminance, contrast, and
spatial frequency that will depend on the sub-
marine speed, ocean currents. presence of other
nearby objects, and so on. The signal will also
vary over time as the submarine approaches.

Even when the formal or legal definition of
a signal is clearly specified in terms of some
measurable physical event, people may treat
the event variably in different contexts. For
example, the legal definition of a conflict in the
flight paths of two aircraft being monitored by
air traffic control (ATC) is fixed. According to
Federal Aviation Administration regulations, a
"signal" in ATC occurs when two aircraft come
within 5 nautical miles (nmi) horizontally and
1 000 ft vertically of each other.

The acceptable minimum aircraft separation
values (vertical and lateral) actually depend on
several variables, including the altitude of the
aircraft and the environment (cruise, approach
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for landing, etc.). For the sake of simplicity, how-
ever, in this paper we use the 5-nmi/l000-ft
minimum standard that prevails in low-altitude
(below 29,000 ft) cruise flight.

However, the separation distances that the
air traffic controller will consider a signal re-
quiring action will often exceed these mini-
mum values. The controller's definition of
signal will vary depending upon the complexity
of the traffic, the nature of the ATC sector
being controlled, and other factors. In one con-
text, say, with many climbing and descending
aircraft, two planes separated by 8 nmi may to
some extent represent a signal requiring urgent
action because of the potentially high likeli-
hood that the planes will come closer while the
controller is distracted by other aircraft. In
another situation, say, level cruise flight, two
aircraft that approach to within 6 nmi may not
particularly perturb the controller.

The definition of a signal in many real-
world situations is therefore variable or fuzzy.
We introduce the concepts of contextual and
temporal variability as key characteristics of
signals in real settings and propose that fuzzy
methods are particularly well suited to deal
with these sources of variability. These consid-
erations suggest that fuzzy logic could be used
to extend traditional SDT analysis to situations
in which membership of events to signal and
noise sets is not strictly dichotomous.

There has been some limited work incorpo-
rating both fuzzy logic and SDT. Fuzzy meth-
ods have been used to create decision-making
algorithms whose results have then been ana-
lyzed with traditional SDT or other decision-
theoretical analysis; such combinations have
been used in the domain of personnel psychol-
ogy (Alliger, Feinzig, & Janak, 1993; Craiger &
Coovert, 1994). In contrast, the present work
considers fuzzy logic and SDT simultaneously
as opposed to successively, and develops gener-
al methods that can be used across a wide vari-
ety of applied and basic domains. Furthermore,
our methods allow for an analysis of the influ-
ence of the fuzziness inherent in the real world
at all stages, from signal to response. We de-
velop the basic postulates of fuzzy SDT and
derive formulas for the fuzzy analysis of detec-
tion performance. We also discuss the implica-
tions of fuzzy SDT analysis for understanding

human and machine detection performance.
Before describing the formulas for fuzzy SDT
analysis, we provide brief overviews of fuzzy
logic and conventional SDT in the next two sec-
tions. Readers familiar with these topics may
wish to skip either or both of these sections.

FUZZY LOGIC: A REVIEW

Fuzzy logic represents an alternative meth-
od to traditional set theorv for assignment of
membership of events to sets (Zadeh, 1965).
Fuzzy methods have been used in a variety of
basic and applied areas (see Kosko, 1993, for
numerous examples from many scientific do-
mains). Among the areas that are particularly
relevant to the present paper are applications
of fuzzy logic in the following domains; (a)
cognitive psychology (Brainerd & Reyna, 1993;
Campbell & Massaro, 1997; Ellison & Mas-
saro, 1997; Heiser & Groenen, 1997; Massaro,
1l988, 1998), (b) human factors/ergonomics and
human-computer interaction (e.g., Genaidy et
al., 1998; Karwowski & Mital, 1986; Kreifeldt
& Rao, 1986; Lehto & Sorock, 1996; Moray,
King, Turksen, & Waterton, 1987; Moray, Krus-
chelnicky, Eisen, Money, & Turksen, 1988),
and (c) biomedical engineering and neuroscience
(Baumgartner, Vinddischberger, & Moser, 1998;
Bellazzi, Silviero, Stefanelli, & De Nicolao,
1995; Boston, 1997; Lowe, t larrison, & Jones,
1999; Phelps & Hutson, 1995). Despite the great
number of these applications, we must reiterate
one point: The application of fuzzy logic in the
previously cited works has been either to de-
tect a discrete (nonfuzzy) signal or to analyze a
system or result that was derived using non-
fuzzy methods. In contrast, in the present paper
we present a general model for analysis of
fuzzy signals and fuzzy responses.

Fuzzy is best thought of as an extension of
traditional set theory, in which elements either
do or do not belong to a given set. Because a
clear boundary exists between set members and
nonmembers, traditional sets are often referred
to as crisp sets. Suppose we wish to define a set
to describe the range of temperatures (t) that a
normal human being would consider comfort-
able. An example of a crisp set is

C(t) = [55, 851.
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which would mean that the numbers 55 and
85 (temperatures in degrees Fahrenheit), and
all real numbers between these two, are mem-
bers of the set C, and all numbers below 55 or
above 85 are nonmembers. If we plot C(t) ver-
sus t, the result would appear as shown in the
solid line in Figure 1. Hiowever, it would seem
more appropriate to distinguish between levels
of comfort rather than to assign every temper-
ature to either the comfortable or uncom-
fortable sets. We could instead develop a
function that permitted a temperature's mem-
bership in the set comfortable to be some-
where between yes and no, or between 0 and
l. The mapping function could be derived in a
number of ways. For example, one could use a
scale from 0 (completely uncomfortable) to 1
(completely comfortable) and have a sample
of people rate several temperature values on
this scale. The average rating for each temper-
ature and the resulting function might be
defined as follows:

0
C() = { (t - 50)/20,

(90 - t)/20
0

t < 50
50 < t < 70 ).
70 < t < 90
t > 90

(2a)
(2b)
(2c)
(2d)

This function, which is shown in the dotted
lines in Figure 1, provides a more realistic as-
sessment of comfort versus temperature and
better captures the variability in comfort level.
The act of assigning nonbinary membership
degrees to a previously binary definition can be
called fuzzification.

SIGNAL DETECTION THEORY: A REVIEW

SDT assumes two possible states of the
world: signal (s), in which the event of interest
is present, and noise (n), in which it is absent
(Green & Swets, 1966). At any given time one
of these states of the world occurs. The detec-
tion system (human or machine, or some com-
bination) makes a yes (Y) or a no 'N) judgment,
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Figure 1. Crisp and fuzzy plots of comnfort, C, as a function of temperature, t.
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indicating whether or not it is believed that the
signal is present or absent. Across many such
occurrences or trials, the two possible states of
the world and the two possible decisions result
in four possible outcomes, each with an associ-
ated probability (P):

Hit; signal present, yes judginent,
P(Yls) = Hit rate (HR) (3a)

Miss; signal present, no judgment,
P(Nis) = Miss rate (MR) (3b)

False Alarm (FA); signal absent,
yes judgment, P(Yln) = FA rate (FAR) (3c)

Correct Rejection (CR); signal absent, no
judgment, P(Nln) = CR rate (CRR). (3d)

Onlv two of the four probabilities are need-
ed for complete characterization of the perfor-
mance outcomes, because HR + MR = 1, and
CRR + FAIR = 1. The convention is to use the
probability of a Hlit, or I-lit Rate (HR) and the
probability of a False Alarm, or FA Rate (FAR),
to describe the decision outcomes. The hit and
false alarm probabilities can then be used to
compute various measures of the performance
of the detection system. In general, it is neces-
sary to distinguish the sensitivity or bias-free
accuracy of the detection system from the cri-
terion or decision threshold associated with
the choice of judgments or responses. In SDT,
sensitivity is indexed by the parameter d' and
the criterion by the parameter 3 (Green &
Swets, 1966; MacMillan & Creelman, 199 1).

BASIC ELEMENTS OF FUZZY SDT

Mapping Functions for Signal
and Response

The basis for the notion of fuzzy SDT is that
an event or trial can belong to the set signal
with some degree between 0 and 1. In addition,
the response can belong to the set response with
a degree between 0 and 1. Throughout this
paper the parameter s will refer to the degree to
which an event is a signal, The parameter r will
refer to the degree to which a yes (signal pre-
sent) response was made. In fuzzy SDT, either s
or r or both must be continuous variables in the
range L0, 1]. One of the two may be binary; that
is, E {0, 1 1. I-lowever, s and r cannot both be

binary, for this would then reduce fuzzy SDT to
crisp SDT. This paper primarily deals with cases
in which s and r are both continuous, or s is
continuous but r is binary.

In assigning degrees of membership to the
signal (s) and response (r) sets, it is necessary to
evaluate all possible states of the world (SWs)
and each possible response value (RV), and to
determine what values will be assigned to each.
A mapping function is required to derive a sig-
nal value, s, based on some variable or set of
variables that describe the SW. Many such
mapping functions are possible for the signal.

As noted by Moray et al. (1987), in many
applications of fuzzy logic the mapping func-
tions that are chosen are plausible but never-
theless appear somewhat arbitrary (but see
Tsoukalas and Uhrig, 1997). This is particular-
ly true if a mapping function has to be devel-
oped for some perceived characteristic, such as
the emotional quality of a face (Ellison & Mas-
saro, 1 997) or the heaviness of a lifted object
(Genaidy et al., 1998). This problem is some-
what less severe in fuzzy SDT, because the
mapping function for the signal can generally
be based on objective physical variables corre-
sponding to the state of the world. Given that
these variables can be measured, the mapping
function can be specified.

Of course the type and complexity of the
mapping function will vary with the applica-
tion. For instance in the ATC example described
earlier, a function could map the distance sepa-
rating two aircraft, call it a, onto s. The map-
ping function could also be considerably more
complex than this. by taking into account not
only a. but other variables as well.

The mapping function for the response
could be based simply on a confidence rating
of signal presence: for example, "80% confi-
dent a signal occurred." Such mapping is an
extension of traditional SDT methodology
(Green & Swets, 1966). Often in standard SDT,
in order to derive multiple receiver operating
characteristic (ROC) points, judgments of con-
fidence are permitted to be incorporated into
the response (e.g., yes-sure, yes-not sure, no-
not sure, no-sure). Despite the nonbinary
nature of the judgments, the traditional analyt-
ic procedure for such rating data has still been
categorical rather than fuzzy. Typically each
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confidence rating is mapped cumulatively into
dichotomous yes-no categories (i.e., first an
analysis is conducted with yes-sure as a yes
and all other responses as a no, next the yes-
sure and yes-not sure are analyzed as yes re-
sponses with the others being no, and so on).
Fuzzy SDT differs fundamentally from crisp
SDT in that membership assignments to the
yes and no categories remain fuzzy rather than
being forced into crisp categories. Finally. the
mapping function for r can also be based on
reported signal severity, criticality, or intensity.

In SDT, the value of a random variable, the
evidence variable, represents the strength of
the signal as perceived by the operator (Green
& Swets, 1966). As the evidence variable is
generally continuous, it is amenable to fuzzifi-
cation. For some applications, in fact, the r val-
ues can be assigned based on the evidence
variable. This strategy is appropriate if signal
detection performance is being measured with
regard to how decisions are made based on
what is perceived. However, if one is interested
in decision-making performance and patterns
with respect to some "true" or objective state
of the world, then the variable mapped into r
must be some measure of the actual objective
state of the system about which decisions are
being made.

Mapping functions: Discrete states of the
uworld and responses. The following formulas
can be used whenever there are a finite number
of discrete states of the world (see Tsoukalas &
Uhrig, 1997):

s =s5 for SW= 1 to ns (4a)
r rR for RV= to nR (4b)

in which SW = each possible value of the state
of the world, RV = each possible response
value that could be made, ns= number of pos-
sible discrete SW values, and nR = number of
possible discrete RV values. One case in which
this mapping approach would be used is when
discrete ratings of confidence level of response
are taken (yes-sure, yes-unsure, and so on).

Mapping functions: Continuous states of the
world and responses. In other situations the
original variables representing SW and RV
may be continuous. In these cases. SW or RV
can take on an infinite number of values, and a

function should be constructed mapping the
SW or RV values to s or r values, respectively,
in the range between 0 and 1:

s (SW) = fSW)
r (RV) = g(RV)

(5a)
(5b)

in which SW = original value of the variable
representing state of the world. on an interval
scale, RV = original value of the variable repre-
senting response value, on an interval scale,
and f(.), g(.) = functions defined according to
the needs of the analysis being conducted and
whose range must be [0, I] or included within
[0, 1].

Some features of these mapping functions
should be noted. First, the function itself need
not be continuous, depending on contingencies
in the domain being analyzed. For example if
some legal cutoff point exists in the SW, a
break in the function's continuity can occur at
that point (e.g., a jump from r = .5 to r = .9).
Also, in fuzzy SDT it is not necessary to choose
between Equations 4a-4b and Equations 5a-5b.
For example it is permissible to have s be based
on a continuous interval value (use Equation
5a) and r on a categorical value (use Equation
4b), or vice versa.

Example mapping ftunction. Consider con-
flict detection in air traffic control, in which
the signal (presence of an aircraft conflict) is
coded according to the separation distance, a,
between two aircraft potentially headed for a
conflict (horizontal separation less than 5
nmi). The function mapping the SW variable.
a, to s can be determined according to the fol-
lowing rationale. As the separation distance, a,
decreases, the event becomes more signal-like
and conversely, becomes less signal-like as a
increases. As mentioned previously, the legal
FAA definition of a conflict in ATC is 5 nmi
horizontal separation. Clearly, though, worse
things can happen besides a violation of the
legal minimum. For this reason a collision (a =
0) is defined as s = I and a marginal violation
of the 5-nmi criterion (a = 5) as s = .9. A
monotonic decreasing function can be con-
structed that allows for an increasingly sharp
drop-off of s as a increases beyond the 5-nmi
cutoff and yields relatively similar (low) values
of s at all high values of a.

641

Parasuraman, R., Masalonis, A.J., & Hancock, P.A. (2000). Fuzzy signal detection theory: Basic postulates and formulas for 
analyzing human and machine performance. Human Factors, 42 (4), 636-659.



Winter 2000 - Human Factors

Table I gives some values of a and s, and
Figure 2 plots the mapping function. The crisp
mapping function that would be used in stan-
dard SDT is also shown. For a > 5 nmi, the
crisp function assigns no value to signal. This
could result in some loss of information and
potential insensitivity in analyzing detection
performance in comparison with fuzzy SDT
because it is well known that air traffic con-
trollers typically attend to, and sometimes even
act on, pairs of aircraft that will be greater
than 5 nmi apart.

If there are many or infinite SW values, or a
theoretical basis exists for using a specific
mapping function, or both, a continuous map-
ping function (Equation 5a) should be used.
For example, a could be mapped to s using the
sigmoid function, s = 1/[1 t (a/k)n], in which
k is a constant and the exponent n can be cho-
sen depending upon the desired sharpness of
the mapping function. The function in Figure 2
can be approximated with a sigmoid with k =
10 and n = 5. Other sigmoid functions could
also be used, such as the "squashing" functions
that are commonly used in connectionist
(neural network) models (Rumelhart, Hinton,
& Williams, 1986).

Exploration of Methods for Calculating
Fuzzy Set Membership

Let us retrace the steps of the analysis so far.
First we allowed the definition of both signal, s,

and response, r, to be continuous rather than
binary. Next, we discussed how mapping func-
tions can be selected for deriving values of s and
r. An obvious next step is to determine to which
of the four traditional SDT categories (Hit,
Miss, FA, and CR) a given s and r pair should
be assigned. To which category should the Is, r}
pair be assigned and how? The solution is to
allow a given event pair to belong with some
degree to more than one of the four categories.
In traditional SDT, each event falls completely
into one of the four outcome categories, based
on two dichotomies (SW - signal vs. noise; RV
- yes vs. no). In fuzzy SDT, on the other hand,
each event can fall into more than one of the
four categories used in traditional SDT.

In evaluating methods for determining an
event's degree of membership in each of the
four outcome categories, we applied two criteria
to develop an appropriate set of functions. First,
the functions had to reduce to those of crisp
SDT when s and r were made binary, because
fuzzy SDT is an extension of the crisp case (or
alternatively, crisp SDT is a special case of fuzzy
SDT). A second criterion was face validity - if a
set of functions gave results that were illogical
for any or all inputs, they were rejected.

An important component of our judgment
of face validity was the expectation that perfor-
mance will be considered better the closer that
r is to s. For example, if s = .7, the optimum
degree of response r should also be .7. In the

TABLE 1: Example of a Mapping Function in an Air Traffic Control Application

Separation Signal (s) Separation Signal (s) Separation Signai (s)
a (nmi) a (nmi) a (nmi)

0.0 1.00 4.1 0.92 9.0 0.65
1.0 0.98 4.6 0.91 10.0 0.50
1.3 0.97 4.9 0.90 11.2 0.33
1.9 0.96 5.0 0.90 12.0 0.25
2.0 0.96 5.8 0.88 12.3 0.23
2.2 0.96 6.0 0.87 13.4 0.15
2.4 0.95 6.9 0.83 14.5 0.12
2.9 0.94 7.0 0.83 15.6 0.09
3.0 0.94 7.1 0.82 16.1 0.08
3.1 0.94 7.3 0.81 16.2 0.08
3.3 0.93 7.4 0.80 17.8 0.04
3.7 0.93 7.7 0.77 19.0 0.02
3.9 0.92 7.9 0.76 19.3 0.01
4.0 0.92 8.8 0.67 20.2 0.00

Note. An Aircraft-to-Aircraft "Conflict" or Signal (s) is Defined in Terms of the Separation Distance (a) Between Aircraft.
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Crisp Mapping
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Figure 2. Sigmoid mapping function relating signal value, s, to each possible value of aircraft separation dis-
tance, a. as might occur in an air traffic control case. The rectangular function represents the standard or
crisp SDT mapping of s to a.

same vein, if r > s, the ideal set of functions
will assign at least some degree of FA member-
ship to the event because the response degree
is higher than ideal and the Miss degree for
such an event should be 0. The opposite
should hold true when r < s. The Miss degree
membership should be nonzero and that for
FA should be 0.

The considerations just discussed are based
on the assumption that both s and r are defined
on scales that are mappable to each other. In
other words, whatever the application domain,
the method of assigning memberships to s and
r should be done such that an s of 0 calls for
absolutely no response (r = 0), and an s of .3
calls for whatever degree of response has been
defined as r = .3, and so on. There is arguably
some danger in the assumption that such a
mapping is alwavs possible, because the
assignment methods for defining s and r in a
fuzzy system can be subjective. Ilowever, this

does not mean that there will be no defensible
basis for membership assignments. This point
is well recognized in the literature on fuzzy
logic: "Membership functions may represent
an individual's (subjective) notion of a vague
class.. .Membership functions may also be
determined on the basis of statistical data or
through the aid of neural networks.. .mem-
bership functions are primarily subjective in na-
ture; this does not mean that thev are assigned
arbitrarily, but rather on the basis of applica-
tion-specific criteria" (Tsoukalas & Uhrig,
1997, p. 15).

It should be remembered that assignments
in crisp analyses are frequently arbitrary as well.
Take the aforementioned heating example. If a
heater operates on a simple crisp thermostat
rule in which the heat will be on below a certain
room temperature and off above that tempera-
ture, the designer has defined (perhaps arbitrar-
ily, or perhaps because of engineering constraints
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not related to the end goal of human comfort)
what heating strength (e.g. furnace tempera-
ture, fuel consumption) corresponds to on.
This setting cannot always be easily changed by
the user of a home or office heating system.
Therefore the arbitrary nature of signal/response
assignments is not peculiar to fuzzy SDT. As
with crisp SDT, some fuzzy SDT s and r as-
signments will be more arbitrary than others,
and the s assignments will be mappable to the r
assignments more so in some cases than in oth-
ers. For example in aircraft conflict detection,
both signal and response degree might be as-
signed based on the same function translating
distance between aircraft into the range [0, I].
In other words, the true state of the world might
be defined in terms of the closest approach dis-
tance between two aircraft, and the response
might also be a judgment, by a human or an
automated tool, of that distance. This mapping
strategy might be considered better than bas-
ing s on distance and r on probability. However,
sometimes the nature of the problem will be
such that we must use whatever data best re-
flects the question we are trying to answer
about human or machine performance, even at
the expense of the best possible mapping. Con-
tinuing with the ATC example, the most impor-
tant performance measure is likely to be the
human controller's or machine's degree of con-
fidence that a legal separation violation will
occur, rather than the exact distance within
which it is believed the planes will approach.

One cautionary note should be considered.
lf in a fuzzy SDT application there is any sus-
picion that the selected s-to-r mapping might
be flawed (e.g., whatever has been defined as r
= .9 is not likely to be the desired response to
whatever is defined as s = .9). care should be
taken in comparing derived outcome parame-
ters of sensitivity, hit rate, and so on. to other
systems. The mapping could still be used, how-
ever, to compare the performance of different

detectors within the sarne system or to evalu-
ate the performance of the same detector in
that system under different conditions.

BASIC FORMULAS OF FUZZY SDT

We turn now to a recommended set of meth-
ods for carrying out a fuzzy SDT analysis. Once
s and r are mapped onto [0, 1] using appropri-
ate mapping functions, the next step is to derive
event membership in the four outcome cate-
gories, Hit, Miss, FA, and CR. In this section
we present the methods that met the twin cri-
teria of matching crisp SDT results and face
validity. We examined several other methods,
all of which were found to be invalid for one
reason or another. (A short report describing
these rejected methods is available from the
authors on request.)

Mixed-implication Functions for
Fuzzy SDT

In standard SDT, the function mapping val-
ues of s and r to the four outcome categories
can be specified simply in a truth table format.
The truth table, based on logical implication
functions (e.g., "If SW = signal and response =
yes, then Hit"), is shown in Table 2. Each event
is mapped exclusively to only one of the four
outcome categories, with a value of 1, whereas
the remaining categories have entries of 0. In
contrast as mentioned previously, in fuzzy SDT,
events will claim nonzero membership in more
than one outcome category.

Traditional crisp implication functions have
been adapted for fuzzy logic (e.g., Klir & Yuan,
1995; Tsoukalas & Uhrig, 1997). We examined
implication functions for fuzzy SDT based on
maximum and minimum values, as well as a
multiplication function. All had certain unde-
sirable features precluding their use in assign-
ing degrees of category membership for use in
fuzzy SDT. However, a mixed set of functions,

TABLE 2: Truth Table for Standard (Crisp) SDT

Signal (s) Response (r) Hit FA Miss CR

o 0 0 0 01

O 1 0 1 0 0

1 0 0 0 1 0
1 1 1 0 0 0
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combining both the maximum and minimum
functions, possesses properties suitable for
application of fuzzy SDT. The set involves a
combination of different implication functions,
using maximum functions for the error cate-
gories (Miss and FA) and minimum functions
for the correct response categories (Hit and
CR). The membership values for the four deci-
sion outcomes, Hit, Miss, FA. and CR, are
defined by the following functions:

Hit:
miss;
False alarm;
Correct rejection;

H = min (s. r) (6a)
M = max (s - r. 0) (6b)
FA = max (r- s, 0) (6c)
CR =min (1 -s, I -r).(6d)

Table 3 shows a fuzzy SDT truth table for
several selected values of s and r. As an exam-
ple of the results of this function set, suppose
that s = .8 and r = .9. That is, the state of the
world strongly, but not absolutely, points to a
signal, and the observer strongly responds that
a signal is present. Applying equations 6a-6d,
the resulting category memberships are H = .8,
M = 0, FA = . 1, and CR = .1. Hence the out-
come strongly points to a hit, but unlike crisp
SDT, there is also some membership in the FA
category, representing the fact that the response
was stronger than what was called for by the

signal. The CR category is also nonzero, reflect-
ing the small membership of the event in the
noise category and the fact that an unequivocal
yes response was not made. Note also that if
both s and r are forced to be binary (e.g., 0 or
1!. then equations 6a-6d will result in a rever-
sion to the crisp truth table shown in Table 2.

To get an intuitive appreciation of Equations
6a-6d, consider the minimum (Hit, CR) and
maximum (Miss, FA) functions separately. The
minimum functions can be thought of as re-
flecting the degree of overlap (or intersection)
of the fuzzy sets of signal and response (Hits)
and of that of nonsignal and nonresponse
(CR). For hits, for example, one can think of
hit membership as reflecting the degree to
which the response set overlaps the signal set.
If the overlap is perfect, then the Hit member-
ship takes on the value of the signal (and the
response) membership. If the overlap is less
than complete, Hit membership is lower and
takes on the value of the signal or response,
whichever is smaller.

The same reasoning applies to CR member-
ship. For Miss and FA, the function reflects the
rationale that the degree of overresponding or
underresponding (with respect to the signal)
defines the degree of FA and Miss member-
ship, respectively. The rationale for the use of

TABLE 3: Example Truth Table for Fuzzy SDT

Signal (s) Response (r) Hit FA Miss CR

0.8 0.9 0.8 0.1A 0 0.1
0.1 0.2 0.1 0.1 0 0.8
0., 0.1 0.1 0 0 0.9
0.1 0.9 0.1 0.8 0 0.1
0.2 0.2 0.2 0 0 0.8
0.2 0.1 0.1 0 0.1 0.8
0.2 0.3 0.2 0.1 0 0.7
0.3 0.2 0.2 0 0.2 0.7
0.3 0.5 0.3 0.2 0 0.5
0.3 0.9 0.3 0.6 0 0.1
0.5 0.2 0.2 0 0.3 0.5
0.5 0.5 0.5 0 0 0.5
0.5 0.9 0.5 0.4 0 0.,
0.75 0.1 0.1 0 0.65 0.25
0.75 0.75 0.75 0 0 0.25
0.75 0.8 0.75 0.05 0 0.2
0.9 0.1 0.1 0 0.8 0.1
0.9 0.9 0.9 0 0 0.1
0.9 0.8 0.8 0 0.1 0.1
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the maximum is as follows. If the response is
closer to a full yes (r = 1) than the signal is,
then the event membership should fall in the
FA category to some nonzero degree but should
not have any membership in the Miss category.
This follows because r > s. On the other hand,
if the response is closer to a full no than the
signal is (r < s), then the event membership
should fall in the Miss category to some nonze-
ro degree but should not belong with any
degree to the FA category.

Table 3 reveals some interesting features of
fuzzy SDT membership degrees. First, there is
always at least one zero value among the cate-
gories. (In contrast, as Table 2 shows, in crisp
SDT a given event is always associated with
three zero and one unit membership values).
In fact, zero values occur only in the Miss cate-
gory, the FA category, or both, for any given
event, and a zero must occur in at least one of
the two. This outcome follows from the face
validity assumption described earlier.

Note that when r = s, both Miss and FA have
a value of zero, because the response was ex-
actly the correct strength. For example, when r
= s = .9, the event is mostly a hit (.9), partly a
CR (.1). and not at all a Miss or FA (both 0).
Also notice that the values of the four categories
always sum to 1. This is another sensible and
desirable result, because in crisp SDT the four
categories are mutually exclusive. ln our tem-
perature example it is reasonable for a given
value of t to belong, say, to the category cold to
the extent of .8 and to cool with .3, for a total
value greater than 1, as these two descriptors
can overlap. But it is not reasonable for the
memberships of the Hit. Miss, FA, and CR
outcomes to sum to greater than I. Put another
way, although fuzzy SDT permits A r) A to be
nonzero, the sum of the four mutually exclu-
sive outcome categories should be 1, because
even in fuzzv SDT the four categories represent
the full universe of possible outcomes; together
they encompass the "whole truth."

Relating Membership Functions
for Decision Outcomes to
States of the World (SW)

First, the mapping functions map SW to the
signal s and RV to the response r. Next. mem-
bership values for decision outcomes are com-

puted by using the mixed-implication functions
with the values for s and r. It is then relatively
straightforward to examine the relationship
between the membership functions for the
decision outcomes and the SW Given an ana-
lytical mapping function, a family of curves for
the different outcomes can be generated by
varying the response variable r

Figures 3A and 3B plot membership func-
tions for Hits, Misses, FAs, and CRs as a func-
tion of the SW variable a. The parameter is the
response r. (Discrete r values of 0, .3, .5, .7,
and 1 are shown for illustrative purposes only.
In actuality a continuous family of curves would
be generated. as r takes on any value between 0
and 1.) These outcome categories were generat-
ed using the sigmnoid mapping function for air-
craft separation distances shown in Figure 2 (s
= 1/[1+(a/10)5 ]). Because the a-to-s mapping
is nonlinear, so are the functions describing the
outcome categories. These four functions take
on a shape that reflects the shape of the original
function mapping the SW to s. but the value of
r puts a limit on the maximum membership in
I-fit and FA, whereas (1 - r) represents the max-
imum possible membership for iMiss or CR.

The membership functions show that in
general, the membership values for Hlit and FA
trade off against each other, as do those for CR
and Miss. Consider Figure 3A. For any given
value of r (except r = 0), the membership value
for IFlit decreases with an increase in a (greater
aircraft separation), whereas that for FA
increases. This makes intuitive sense because
as a increases, the event (aircraft separation)
becomes less signal-like and more noise-like,
so that the outcome of a response, irrespective
of its strength, will become less Hit-like and
more FA-like. Also as Figure 3A shows, for
any given value of a, both Hit and FA member-
ships increase with increased r. This is again
reasonable because for any given signal value,
as response strength increases, the outcome
should become both more Hit-like and more
FA-like. These patterns are similar for the CR
and Miss memberships, except that the varia-
tions with a and r are inverted (see Figure 3B).

Figure 3 also shows that membership values
for Hit and Miss do not sum to 1; that is, I-I +
M X 1. By the same reasoning, CR + FA X 1.
Recall, however, that the sum of the member-
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Figure 3. Fuzzy Hit. Miss, FA, and CR membership values with sigmnoid mapping of s to a.

ship values of all four outcomes is always 1;
that is, H + M + CR + FA = 1.

Figure 4 gives the outcomes if the SW-to-s
mapping is linear. These figures are included
Fr illustrative purposes only and most likely
would not reflect a suitable SW-to-s mapping
for air traffic control (but they might be appro-
priate for another application). Both Figures 3
and 4 show the correspondence between the

original mapping function's shape and that of
the outcome category functions, as well as
showing that the limits set by r and (I - r, are
independent of the shape of the original map-
ping function.

Computation of Fuzzy Hit and False
Alarm Rates

We now turn to a discussion of how to

0.9
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compute some of the standard SDT measures
when the signal and response are defined fuzzi-
ly. The rates for each of the four decision out-
comes (FHR, MR, FAR, CRR) can be calculated
by summing the membership values in each
category over all trials and dividing by the sum
across trials of membership values in signal (s)
or not-signal (1-s). Formally, all four decision
outcomes can be computed as follows,

IIR = I(Hj)/ E(si) for i = 1 to N
MR = E(AMj)/ E(si) for i = I to N
FAR = Y(FAi)/ E( l - s;) for i = I to N
CRR = Y(CRi)I X(1 - sj) for i = I to N

(7a)
(7b)
(7c)
(7d)

in which i is the trial number, N is the total num-
ber of trials and Hi is the degree of Hit for trial
i, M; is the degree of Miss for trial i, and so on.

The E(1 - s,) term, although formally com-
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puted by adding (1 - s;) for each trial i, can be
more efficiently calculated as N - X(s) for i = I
to N. By substituting Equations 6a-6d for the
membership values of H;, M;. and so on, Equa-
tions 7a-7d can be rewritten as:

HR = 1(min(si, ri))/E(si) for i = 1 to N (8a)
MR = Y;(max(s;- ri. O0))

X(s) for i= I to N (8b)
F.R = 1(max(ri- si,. O))

(Il-s) for i = I to N (8c)
CRR = X(min(I - si, I - ri))/

O l-s;) for i = I to N. (8d)

Either Equations 7a-7d in conjunction with
Equations 6a-6d, or Equations 8a-8d alone,
can be used in any application in which s is
manipulated experimentally (or varies natural-
ly) over several trials and separate detection re-
sponses are made on each trial. Note that the
redundancy between Hit and Miss rates (i.e.,
HR + MR = 1), and between FA and CR rates
(FAR + CRR = 1), holds true for both crisp
and fuzzy SDT. (This redundancy should not
be confused with the lack of redundancy be-
tween membership values on individual trials
for Hit and Miss and between values for CR
and FA.)

When we use fuzzy SDT Equations 6a-6d
and 7a-7d, or Equations 8a-8d to aggregate
performance across cases or trials, the method
follows directly from that used for crisp SDT.
The total Hit and Miss memberships for all tri-
als are summed and divided by the sum of the
signal memberships for all trials. For the FA
and CR rates, which are dependent on the
degree to which each trial did not contain a
signal, the sum of memberships should be
divided by the sum of the extent to which each
trial was not a signal (for each trial i, this is
equal to [I - si]!). Applying Equations 7a-7d to
the data set presented in Table I yields the fol-
lowing. We obtain X(s,) = 9.05 and E(l - si) =
19 - 9.05 = 9.95. just as in the crisp case, the
Miss rate will be ( I - HR), and the CR rate is
(1 - FAR). The sums of the four outcome cate-
gories are 7.00, 2.05, 2.35, and 7.60 for Hit,
Miss, FA. and CR, respectively. The degrees of
membership for each category can now be com-
puted by entering these values into Equations
7a-7d.

HR = 7.00/9.05 = .773
MR = 2.05/9.05 = .227
FAR = 2.35/9.95 = .236
CRR = 7.60/9.95 = .764

The same calculations could be done direct-
ly from the individual s and r values using Equa-
tions 8a-8d. With these calculations completed,
standard SDT parameters (sensitivity, bias) can
be computed just as with crisp SDT. In the
next section we continue the analysis begun in
this section with our sample data set, and dis-
cuss an alternative method for assessing sensi-
tivity in fuzzy SDT.

Sensitivity and Criterion in Fuzzy SDT

In traditional SDT the parametric estimate
of operator sensitivity. d', represents the stan-
dardized distance between the normal curve
approximating the signal distribution and the
one approximating the noise distribution. In
other words, a curve is approximated for the
frequency of each level of the evidence variable
given that there is a signal, and another curve
is approximated given that there is noise. The
d' measure is the horizontal distance, in units
of standard deviations, between the curves.
Another way of saying this is that the place-
ment of the observed Hlit rate on a normal dis-
tribution, minus the placement of the observed
FA rate on a normal distribution, will be equiv-
alent to the distance between the signal and
noise distributions and will provide an esti-
mate of the detector's sensitivity. The d' para-
meter is most easily calculated by determining
the difference between the standardized Hit
and FA rates using the following formula:

d = Z(HR) - Z(FAR). (9)

Because the fuzziness of the signal has al-
ready been captured in the definitions of s, and
r, and from them, fuzzy HR, FAR, MR, and
CRR, the traditional d' formula can be used in
fuzzy SDT analysis. WVe illustrate the calcula-
tion of d' using the sample data from Table 3.
For these data, FHR is .773 and FAR is .236.
Taking the normal deviates of these values and
using equation 9 gives d' = 1.47.

Another way to assess d' when s is fuzzy is
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through integration. In traditional SDT, d' is
the horizontal distance, in units of standard
deviations, between the means of the Gaussian
probability density distributions for signal and
noise. In crisp SDT the noise curve is essential-
ly the curve for s = 0, whereas the signal curve
is for s = 1. In fuzzy SDT the value of s can fall
anywhere between 0 and 1; therefore, another
appropriate way to assess sensitivity is to deter-
mine how far, in standard deviation units, all
the possible curves sit from each other. In other
words, theoretically each of the infinite curves
between s = 0 and s = 1 would be approxi-
mated. Using the s = 0 curve as a reference, the
contribution of each of the infinite curves to d'
would be weighted by the distance of its s value
from 0, and the integral would be calculated:

d = fIZ(x value at s = q) - Z(x value at s = 0)] dq,
o (10)

in which x is the value of the evidence variable
or SW. If s had only a finite set of values, then
the distances of each of the existing s curves
from s = 0 would be computed.

d' = ', [Z(x value at s = qi) -

Z(x value at s = 0)] for i = 1 to N, ( 1.)

in which x is the value of the evidence variable
or SW; q, represents each of the discrete values
of s, and N is the total number of discrete s
values.

The traditional SDT criterion measure, ,
can also be calculated using fuzzily derived HIR
and FAR. WAre define ,B in the standard way as

/3= Y(HR)/Y(FAR), (12)

in which Y(.) represents the ordinate of the
normal distribution. For the fuzzy HR and
FAR derived in our sample data set. /3= 0.98.

Fuzzy SDT Correlation Analysis
A completely different method for assessing

the accuracy of detection performance when s,
r, or both, are fuzzy is correlation. The com-
puted correlation coefficient between signal
degree and response degree can be an indica-
tion of the accuracy of detecting a fuzzy signal.

A high correlation would indicate a linear rela-
tionship between r and s. Correlational analysis
has some advantages. If the mapping from SW
to s or from RV to r is erroneous for any rea-
son, then accuracy as computed by fuzzy SDT
may be reduced compared with other methods,
whereas correlation would still capture the lin-
ear nature of the relationship.

The correlational analysis can best be
described with an example. Consider the sam-
ple s and r data shown in Table 4. The respond-
ing system tends to generate r values toward
the middle range of the spectrum, even for more
extreme values of s. The fuzzy SDT implica-
tion functions (Equations 6a-6d) would assign
relatively high Miss and FA values for some of
the events (e.g., s = .1 and r= .35 would result
in an FA membership of .25). However, because
the relationship between s and r is almost per-
fectly linear, as shown in Figure 5, the compu-
ted correlation is very high (greater than .99).

This dissociation between the results of the
various fuzzy SDT analysis methods can have
different consequences, depending upon the
application. It might be that the implication
function is a better measure of performance, if
indeed it was desirable for s to closely match r.
Alternatively it could be that the mapping
strategy used to convert RV to r was too prone
to assigning middle values and did not make
enough use of the extreme (near I or 0) r val-
ues to be reflective of the question of interest.

Correlation analysis can also pose some dan-
ger, similar to that discussed for the implication
functions. For example, it too will penalize the
detector for overly crisp definitions of signal
and response, because a restricted range on one
or both variables can deflate a correlation coef-
ficient. Fortunately, methods exist for correcting
this problem when it occurs. For example, if the
response is always defined in a binary fashion,
point-biserial correlations can be used as a
more appropriate measure of correlation.

Fuzzy Signals, Crisp Responses
Fuzzy SDT analysis can also be extended to

cases in which the signal is fuzzy but the
response is discrete or binary; for example, yes
or no. This is particularly useful when consid-
ering the analysis of actions that are contingent
on a particular decision choice. For example, a
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TABLE 4: Sample s and r Data to Illustrate Differential Results of Implication
Functions Versus Correlation in Measuring Sensitivity in Fuzzy SDT

s r

0 0.3
0.1 0.35
0.2 0.4
0.3 0.45
0.4 0.475
0.5 0.5
0.6 0.525
0.7 0.55
0.8 0.6
0.9 0.65
1.0 0.7

participant in a memory study may decide with
a response r = .8 that he has been shown a par-
ticular face before by the experimenter. If the
experimenter then requires the participant to
pick the face seen before from a group of dis-
tractors, the participant must take a discrete
action consistent with his decision choice.

1-
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Outside the laboratory, too, human and
machine decision choices often need to be
translated into discrete actions. For example,
an automated fault management system in a
nuclear power plant may make a judgment of r
= .9 (e.g., probability, confidence, or severity)
that a fault is present. This fault then needs to
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Figure 5. Piot of sample s and r values illustrating linear relationship.
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be translated into a binary action, that is, to
turn off the plant or not. In general, an overt
response is more difficult to "fuzzify" than the
decision about the state of the world upon
which the overt action is based.

In a recent comparative analysis of the
information-processing performance of hu-
mans and automation, Parasuraman, Sheridan,
and Wickens (2000) also distinguished deci-
sion making from action selection as separate
stages of any detection process. Although they
allowed action levels to be continuous, they
suggested that in most cases actions will be
categorical, even when decision making has
multiple levels.

Table 5 shows the result of applying the
implication functions (Equations 6a-6d) to
sample data with r = 0 or 1. A binary response
to a fuzzy signal always results in the event's
having nonzero membership in exactly two of
the categories. If the binary response is yes (r =
l), then Equations 6a through 6d reduce to:

H=s
M=O
FA = I -s
CR = 0.

(1 3a)
(13b)
(1 3c)
(I 3d)

Note that the available membership degree of
I is assigned partly to Hiit in the amount of s
and the rest, I - s, to FA. If the binary response
is no (r = 0). then

H = 0
M = s
FA = 0
CR= I -s.

(14a)
(14b)
(14c)
(1 4d)

In this case, the available membership degree
of 1 is assigned partly to Miss in the amount of
s and the rest, 1 - s, to CR.

Equations 13 and 14 can be used to com-
pute detection statistics for the special case of
fuzzy signals with crisp responses. Some addi-
tional special cases should also be noted. For
example, if r values are allowed to vary along
the full range [0, 13 and the observer simply
chooses to make binary responses, then the
Hit, Miss, FA, and CR rates, as computed using
Equations 13 and 14, are appropriate. When
aggregated, they will give measures of accuracy
and bias that can be validly compared with
other observers or systems. However, if the
nature of the response is such that its very def-
inition constrains the possible responses to
only 0 or 1, then fuzzy SDT analysis could un-
derestimate accuracy. This occurs because the
observer is penalized by being forced to use
binary responses when the signal is fuzzy, and
the penalty increases as s becomes fuzzier (is
closer to .5).

To see this, suppose s = .6, but r can be only
0 or 1. The permissible response closest to the
actual s value is 1, which results in IH = .6, M
= 0, FA = .4. and CR = 0, or a sensitivity that
is lower than could be achieved with a fuzzy
response (e.g., r = .6). This outcome renders
invalid any comparisons of fuzzy SDT parame-
ters between systems or situations in which r is
free to vary across the full range [0, 1] and
those in which r is only allowed to be 0 or 1.

However, the results from fuzzy SDT analy-
sis of such a situation are, at worst. no less
detrimental to calculated accuracy measures
than the outcomes of a traditional forced-choice

TABLE 5: Sample Hit, Miss, FA, and CR Outcomes for Fuzzy SDT Analysis When the Response r Is Binary
(0 or 1)

s r Hit Miss FA CR

0.1 1 0.1 0 0.9 0
0.3 1 0.3 0 0.7 0
0.5 1 0.5 0 0.5 0
0.7 1 0.7 0 0.3 0
0.9 1 0.9 0 0.1 0
0.1 0 0 0.1 0 0.9
0.3 0 0 0.3 0 0.7
0.5 0 0 0.5 0 0.5
0.7 0 0 0.7 0 0.3
0.9 0 0 0.9 0 0.1
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paradigm in which both signal and response are
constrained to binary values. Furthermore. al-
lowing the definition of s to be fuzzy will improve
estimates of bias by capturing the variability in
signal strength, making it possible to assess, for
example, the extent to which stronger signals
are more likely to generate a response.

The only potential problem remaining with
this type of situation is as follows: When the
domain involves fuzzy s and binary r, attempts
to compare different operators or different sit-
uations within the same system may be con-
founded by the 'luck of the draw." That is, if
operator P happens to get a larger number of
the "more fuzzy" signals (e.g., s values of .4, .5,
.61 than operator Q, then it will be more diffi-
cult for P to achieve high HR and CRR values
overall.

Two solutions exist for this situation. First,
one might reconsider whether there might be
some way to fuzzify r, such as using confidence
or probability ratings, even if a binary action is
taken. Second, if this is not possible or desir-
able, the s value can be rounded to 0 or 1, and
traditional crisp SDT analysis conducted. Note
that rounded does not have to mean that an s
of .5 or more rounds to 1, whereas an s of less
than .5 rounds to 0. The cutoff can be placed
anvwhere that it makes sense to do so, accord-
ing to the needs of the particular situation.

It is also possible to conduct an analysis in
which trials with middle values of s are ex-
cluded from analysis, high s values are classed
as signal-present, and low s values as signal-
absent. Altematively, the cutoff can be placed
at one point and the traditional SDT analysis
conducted, then the cutoff can be moved and
another traditional SDT analysis conducted,
and so on. Such a moving-cutoff strategy is
analogous to the use of confidence intervals in
traditional SDT - or for some analyses, not
merely analogous but equivalent, because con-
fidence interval ratings can be converted to r.

DISCUSSION

Summary of Fuzzy SDT Analysis

The fuzzy SDT analysis developed in this
paper involves four main steps: (a) selection
and application of mapping functions for states

of the world and responses; (b) use of mixed-
implication functions to assign degrees of mem-
bership in the decision outcomes of hits, misses,
false alarms, and correct rejections; (c) compu-
tation of fuzzy hit, miss, false alarm, and correct
rejection rates; and (d) computation of fuzzy
sensitivity and bias measures.

The first step is the selection of mapping
functions. The signal mapping function maps
variables that describe the states of the world
into the fuzzy signal set with membership
strength s. WVe described several ways in which
such functions could be selected. Mapping
functions will vary with the application and
can be relatively simple, through the use of a
single variable (as in the ATC example: see
Figure 2), or could be more complex by being
based on many variables.

Mapping functions can also be discrete or
continuous and can be derived empirically or
based on some theoretical premise. Among
continuous analytical functions, the sigmoid
may best capture the variability inherent in
many applications. Selecting the response map-
ping function is relatively straightforward and
can be based on judgments of confidence, on
the reported strength, severity, or criticality of
the signal, or both.

The second step is the use of mixed-implication
functions for assigning degrees of membership
in the conventional SDT outcomes of hits, miss-
es, false alarms, and correct rejections. We used
two criteria for choosing appropriate functions:
comparability with crisp SDT and face validity.
The implication functions we propose, which
combine minimum and maximum functions,
meet both criteria and seem suitable for a wide
range of applications. However, we make no
claim that these are the best functions or that
other functions may not be more suited to par-
ticular applications. Can the implication func-
tions be optimized? Perhaps. One possibility
would be to use Monte Carlo methods or sim-
ulation with a data set with well-defined states
of the world and outcomes, and choose a set of
functions that best matches the defined out-
comes.

The third step in fuzzv SDT analysis in-
volves computing the mean fuzzy hit and false
alarm rates by weighting the membership de-
grees in these outcome categories by the average
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degrees of membership in the signal (s) and
noise (1 - s) sets. The fourth step, computa-
tion of sensitivity and bias measures, then fol-
lows in exactly the same manner as it would in
crisp SDT.

Crisp and Fuzzy SDT
SDT could arguably be viewed as one of the

most robust and useful quantitative theories in
psychology. The familiar adage, "there is noth-
ing so practical as a good theory," is also par-
ticularly well suited to SDT, given the variety
and range of the practical applications of SDT
in psychology, human factors, and other fields
(Swets, 1996). In the present paper we have
proposed that combining fuzzy logic and SDT
can further enhance the range, power, and util-
ity of SDT. Nevertheless, it is instructive to
examine the points of convergence of crisp and
fuzzy SDT.

The approach to fuzzy SDT we have out-
lined in this paper shares some features with
the uncertain signal problem. This refers to the
case in which there is uncertainty regarding
some dimension of the signal - for example, its
duration, starting time, frequency, location, or
other characteristics - so that the signal is
known statistically (SKS). The case of no un-
certainty is referred to as a signal known exact-
ly (SKE: Tanner & Birdsall, 1958). A number
of researchers have compared detection perfor-
mance for SKS and SKE for a number of dif-
ferent dimensions of signal uncertainty, the
general finding being that uncertainty reduces
detectability (Egan, Greenberg, & Schulman,
1961; Green & Swets, 1966; Swets, 1984). SKS
could be linked to the mapping function con-
cept of fuzzy SDT. For example, one could de-
velop a function that mapped all sources of
uncertainty regarding the signal onto the signal
strength parameter, s.

In this sense, fuzzy SDT, and the SKS case in
SDT can be considered to be related. In anoth-
er respect, however, the two are distinct, partic-
ularly in nonlaboratory conditions in which
there is uncontrolled variability in the signal.
In the SKS case, the mapping of SW to the sig-
nal is nevertheless crisp, and the uncertainty is
introduced in its presentation to the observer.
For example, an SKS experiment in the labora-
tory could involve detection of a 1 000-Hz tone

presented at random times (Egan et al., 1961).
Although the time of presentation of the signal
is uncertain, the definition of the signal, in terms
of the SW-to-signal correspondence, is crisp.
In contrast, in the fuzzy SDT cases we consid-
er, the SW-to-signal correspondence is uncertain.
An example might be a sonar operator listen-
ing to sonar returns consisting of multiple fre-
quencies: A signal indicating the presence of a
submarine is not defined crisply as a 1000-Hz
tone but as an auditory stimulus whose fre-
quencies vary with context and over time.

Previous Related Work on Fuzzy Logic
Fuzzy logic has been applied to a wide array

of problems in psychology (e.g., Massaro, 1998)
and human factors (e.g., Moray et al., 1987).
For the most part, however, fuzzy logic has not
previously been explicitly combined with SDT
to develop a general model of fuzzy detection
performance, as presented in this paper. Never-
theless, there has been some relevant prior
work; for example, a study of word recognition
by Meng and Li (1990). Although this study
did use fuzzy logic and SDT, it did not present
a general model of fuzzy SDT as we do.

There has also been some relevant work on
machine classification of noisy signals. Boston
(1997) carried out an analysis of the classifica-
tion of event-related brain potentials (ERPs).
H-le used fuzzy logic to define the degree to
which the values of a potential signal on two
different ERP features reflected a true ERP sig-
nal. He contrasted the judgments regarding sig-
nal presence resulting from fuzzy analysis to
the performance of a Bayesian detection algo-
rithm. But the end result of his analysis involved
rounding out the decision to relatively crisp
outcomes: signal present, signal absent, or un-
certain.

Although these studies did consider fuzzy
logic in the context of particular signal detec-
tion problems, they stopped short of developing
the general case of fuzzy SDT, which retains
the continuous definition of signal, response,
or both, resulting from contextual and tempo-
ral variability. The methods we presented in
this paper allow one to carry the fuzziness
through all the stages of analysis, rather than
reverting back to categorical characterizations
of the outcome. Of course, there are prior exam-
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ples of the use of nonbinary responses to im-
prove the precision of SDT analysis, such as
the use of confidence levels surrounding a yes-
no judgment (Green & Swets, 1966), exploring
the costs and benefits when a decision criterion
is set at different levels (Lehto, Papastavrou, &
Giffen, 1998; Parasuraman, Hlancock, & Olofin-
boba, 1997), and Balakrishnan's (1998) method
for computing response bias by comparing the
types of events (signal vs. noise) corresponding
to each self-rated degree of confidence.

Although these and other methods have ac-
knowledged the existence of continua in SW.
in the response of a decision maker, or in both,
SDT analyses and the resulting interpretations
of sensitivity, bias, and payoffs have generally
assumed crisp states of the world and crisp re-
sponses.

The fuzzy SDT model we have outlined is
also conceptually related to fuzzy logic models
of perception and cognition that have been
developed by cognitive psychologists. Probably
the best known of such models is the fuzzy
logical model of perception (FLMP) of Mas-
saro (1988; Massaro & Friedman, 1990). The
FLMP model assumes that perceptual tasks
involve three stages: feature evaluation, inte-
gration, and decision making. Fuzzy set mem-
berships are used to derive the relationships
between feature values and their integration
prior to the decision stage. In this respect, the
model is similar to Bayesian models of infor-
mation integration. although the use of fuzzy
membership values (or fuzzy truth values) is
unique to the model and distinct from the sub-
jective probabilities that are used in Bayesian
analysis. Given that SDT originated as a per-
ceptual theory. links between fuzzy SDT and
the FLMP model are to be expected. Moreover,
Massaro has advocated the use of "graded" and
"expanded" factorial designs in testing models
of perception and cognition. This method re-
fers to the use of all possible combinations of
graded values of stimulus features, as well as
the presentation of stimuli possessing each fea-
ture value in isolation (Massaro & Hary, 1986).
Massaro and Friedman also recommended test-
ing the FLMP model by using ratings rather
than categorical responses.

In some respects, therefore, there are links
between the FLMP model and fuzzy SDT. The

two are nevertheless quite distinct. FLMP in-
volves the integration of perceived information
derived from multiple stimulus features that
match stimulus prototypes in a fuzzy manner.
It uses an integration procedure functionally
equivalent to Bayesian analysis. Fuzzy SDT,
although it can be based on what is perceived
(evidence variable), is generally concerned with
the analysis of objectively measured stimuli
(states of the world) that map onto the signal set
in a fuzzy manner. It uses mixed-implication
functions to derive fuzzy hit and FA rates, fol-
lowed by conventional SDT analyses.

Our intention in proposing fuzzy SDT is not
iconoclastic; rather, it is to allow the extension
of SDT when it would be useful to do so. As
regression is the global case of analysis of vari-
ance, so fuzzy SDT is the global case of SDT,
improving the precision of signal detection
analyses by retaining the information provided
by the middle ground. rather than by rounding
it into oblivion. Of course, situations still exist
in which the simplicity of the variables at hand
makes the crisp SDT method more parsimo-
nious without a significant loss of information.
We conclude, however, that fuzzy SDT is par-
ticularly well suited to evaluation of detection
performance when there is significant variabil-
ity in the state of the world that defines the sig-
nal to be detected.

Contextual and Temporal Variability in
Signals

There can be both contextual and temporal
variability in signal definition. Contextual varia-
bility refers to the dependence of signal defini-
tion on situation-specific factors (e.g., see the
previously discussed example of signals in ATC
depending on the type of flights, whether level
cruise or climbing/descending). An invariant
crisp definition of a signal may result in erro-
neous conclusions when these factors are pre-
sent. To the extent that the factors can be encoded
into a mapping function as we describe in Step
I of our fuzzy SDT analysis, this form of anal-
ysis can capture the contextual variability bet-
ter than crisp SDT.

Temporal variability refers to the variation
in signal strength over time. In many real set-
tings, the signal is not a discrete event in time
but represents an event that unfolds over time.
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In industrial process control, for example, the
value of a critical system variable (e.g., core tem-
perature in a power plant) will fluctuate over
time but may gradually drift toward a danger-
ously high value if an emergency condition is
developing (Moray, 1986). In medicine, to take
another example, detection of emergency con-
ditions during surgery requires analysis of tem-
poral patterns and trends in the values of vital
patient signs (Lowe et al., 1999). In fuzzy SDT
terminology, the value of s may start low and
increase over time, or start high and decrease
over time.

This type of signal variability over time has
not been explicitly modeled in psychological
studies. This is a curious omission because psy-
chologists have developed sequential sampling
models of the perceived strength of a discrete
signal (e.g., Laming, 1968; Link & Heath, 1975).
In most such models, the perceived signal
strength grows with time following the presen-
tation of the discrete stimulus until some thresh-
old for response is reached. In models of the
discrimination between two stimuli, SI and S2,
the evidence makes a "random walk" between
S1 and S2 until the threshold for one alterna-
tive is crossed.

Sequential sampling and random-walk mod-
els have been used to examine the trade-off
between detection accuracy and speed of re-
sponse. The reason that these and related mod-
els have not been extended to analysis of actual
rather than perceived temporal variability in
signal strength is that most laboratory studies
of detection and discrimination involve dis-
crete rather than continuous signals.

Models of temporal variabilitv of the states
of the world associated with a signal could be
developed or empirically defined. The influence
of temporal variability could then be examined
by extending the mapping function in a partic-
ular application by time, T. If the signal map-
ping function is s = f(SXVJ, then an extended
mapping function would be of the form f(SW,
D). We propose that the ability to incorporate
contextual and temporal variability in signal
definition into the analysis of detection perfor-
mance is one of the major advantages of fuzzy
SDT. Conventional SDT can be thought of as
providing a snapshot of detection performance
at: a particular time. Although several such snap-

shots could be obtained in successive crisp
SDT analyses at discrete points in time, fuzzy
SDT provides a natural way for analyzing con-
tinuous signals by incorporating temporal vari-
ability into the mapping function.

Applications
Many domains in which SDT has been ap-

plied are amenable to fuzzy SDT analysis. Fuzzy
SDT should prove useful in basic studies of
perception, memory, and cognition. In many
laboratory studies, the strength of a signal is
varied as an independent variable. For exam-
ple, in perceptual experiments, participants
may be presented with stimuli of different size,
luminance, or orientation. Depending on the
question being addressed. it may be appropri-
ate to map each level of an independent vari-
able involving signal strength to an s value and
conduct fuzzy SDT analysis on detection rates
across conditions, weighted by the s value of
the given condition. This would provide a
clearer picture of how sensitivity and bias are
affected by the other independent variables
being studied in the experiment.

Fuzzy SDT is also particularly well suited to
applied studies and may better capture the
shades of gray inherent in almost any real-
world domain. In some cases dichotomization
of the signal, the response, or both is neces-
sary. As discussed previously, crisp responses
(yes or no) are often necessary when translat-
ing decision choices into action. However, as
long as the contextual and temporal variability
of the state of the world can be captured (e.g.,
signal fuzzification only), the methods outlined
herein can enrich the performance analysis of
any decision-making system. Furthermore, as
with crisp SDT, fuzzy SDT can be applied to
the analysis of the detection performance of
humans, machines, or joint human-machine
"teams" (Parasuraman, 1987; Sheridan &
Ferrell, 1974; Sorkin & Woods, 1985; Swets,
1996).

Some potential real-world applications of
fuzzy SDT are briefly discussed here. Consider
for example, the evaluation of collision warn-
ings for automobiles and conflict warning sys-
tems for aircraft (Hlancock & Parasuraman,
1992; Parasuraman et al., 1997). Farber and
Paley (1993) discussed the idea of "acceptable"
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false alarms (FA), those being alerts that acti-
vate when the threshold for a collision is almost
violated, thus reminding the user what the
alert looks/sounds like and assuring him or her
the system is still working. Traditional SDT
would class this kind of alert as an FA, where-
as fuzzy SDT would class it primarily as a Hit,
with a small degree of FA. which would more
closely reflect the fact that the event is not
wholly undesirable. The fuzzy SDT analysis is
similar to the concept of graded or likelihood
alartns proposed by Sorkin, Kantowitz, and
Kantowitz (1988) but provides a more general
basis for determining the alarm degree that is
displayed to the human operator.

Similar examples can be drawn from quality
control and process control. In these applica-
tions a warning system may indicate when the
state of a plant or a product has deviated from
the norm by more than some cutoff value (Cale,
Paglione, Ryian, Timoteo, & Oaks, 1998). IHow-
ever, in evaluating the performance of the
detector, one would probably wish to know the
extent to which false alarms (in crisp SDT par-
lance) were generated by events which were
near to that cutoff point and would wish the
same information for so-called misses. Fuzzy
SDT would capture the extent to which false
alarms, for example, had some degree of "Flit"
by virtue of the event being close to the cutoff
for a crisp signal, whereas crisp SDT would
classifv all alerts generated by events beyond
the cutoff equally as false alarms.

An example from industrial psychology serves
to illustrate the potential diversity of fuzzy
SDT applications. Crisp SDT analysis has been
used to evaluate personnel selection tests by
ranking individuals who score above or below
a cutoff score on a selection test of ability or
knowledge, and determining whether they rate
as high or low performers according to a sub-
sequent assessment test or performance ap-
praisal. However, a crisp SDT analysis of this
type of data ignores gradations within high and
low performance as well as ignoring how far
above or below the cutoff score the employee
scored. The use of fuzzy methods by Alliger et
al. (1993) for evaluating employment inter-
view data represented a step in this direction.
Additional fuzzy mappings of employment or
performance-related variables in order to con-

duct a full fuzzy SDT analysis would further
enrich the techniques those authors have sug-
gested.

CONCLUSIONS

In this paper the basic postulates of fuzzy
SDT were presented and simple but powerful
formulas were identified for conducting a fuzzy
SDT analysis of detection performance. Exam-
ples were also provided of applications in basic
and applied work. Of course, fuzzy SDT will
ultimately stand or fall, to some degree, based
on the results it generates in future applications
in psychology, human factors, engineering, and
other domains. We believe its membership in
the set {stand} will be much greater than its
membership in the set {falll.

ACKNOWLEDGMENTS

This work was supported by Grant NAG-2-
1096 from NASA Ames Research Center,
Moffett Field, California. Kevin Corker was
the technical monitor. We thank Neville Moray,
Tom Sheridan, and Robert Sorkin for helpful
comments on a previous version of this paper.

APPENDIX

Symbol Definitions
SW State of the World; objective truth

specifying a priori some physical state
s Signal event in standard signal

detection theory (SDT): also, degree
of membership of state of the world
(SW) in the fuzzy set signal in fuzzy
SDT

M Noise event in standard SDT
Y Yes, or response of a detection system

that a signa' has occurred
N No, or response of a detection system

that a signal has not occurred
r Degree of membership of a response in

the Yes response set in fuzzy SDT
RV Response Value; equivalent to r
P(01s) Probability of a Yes response given that

a signal occurred; also known as the
hit rate (HR)

P' Yln) Probability of a Yes response given that
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a signal did not occur; also known as
the false alarm (FA) rate (FAR)

P(Nls) Probability of a No response given that
a signal occurred; also known as the
miss rate (MR)

P(Nin) Probability of a No response given that
a signal did not occur; also known as
the correct rejection (CR) rate (CRR)

d' Sensitivity of a detection system in
standard SDT

p3 Criterion or decision threshold of
detection svstem

ns Number of possible discrete SW values
nR Number of possible discrete RV values
f(SW) Mlapping function for SW
g(RV) Mapping function for RV
II Degree of membership of a decision

outcome in the fuzzy set Hllt
M Degree of membership of a decision

outcome in the fuzzy set Miss
FA Degree of membership of a decision

outcome in the fuzzy set FA
CR Degree of membership of a decision

outcome in the fuzzy set CR

Fuzzy Implication Functions

Hit: min (s, r)
Miss: max (s - r, 0)
False alarm: max (r - s, 0)
Correct rejection: min (1 - s, I - r)
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