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This work examines the foundations for and explores the implications of fuzzy
signal detection (Fuzzy SDT), a theory that represents the marriage of two power-
ful extant theories, fuzzy set theory and signal detection theory. Fuzzy SDT
permits the modelling and prediction of human, machine, and human±machine
performance in a wide range of settings. Fuzzy SDT exploits the strengths of each
theory to provide new and dynamic insights into performance. Fuzzy SDT explic-
itly recognizes that the binary decision states of classic signal detection represent
two ends of a single continuum whose uncertainty decreases towards such end
states and is maximized in its centre. It is shown how Fuzzy SDT has its origins in
some more general concepts of human performance, and companion works are
referenced which provide the mathematical foundation for Fuzzy SDT and its
application in a speci®c domain. The present work examines the wider implica-
tions of Fuzzy SDT by illustrating the relevance of fuzzi®cation in the larger cycle
of design, con®guration, and use of technology. It also examines the broader
concerns of the temporal relationship between signal and response, showing
time to be a crucial, if neglected, dimension of action, the exploration and exploit-
ation of which can produce a deeper understanding of human behaviour in
psychology, machine behaviour in engineering and human±machine behaviour
in ergonomics.

1. Introduction
Whilst one might desire that the world be presented in terms which are certain, it is
ubiquitously the case that observers have to recognize and cope with ambiguity.
Such ambiguities are spread over space and time and are often resolved by an
individual’s active exploration. When phenomena exceed one’s simple, unaided
exploratory capabilities, they provide a strong stimulus for technological innovation.
As Hancock (1997) has noted, `while the perception-action link may explain how we
explore our environment, the perception-action gap may explain why we explore in
the ®rst place’. In typical terrestrial environments, stimuli resolve over space and
time such that an observer’s understanding of what is present and what response is
appropriate evolves dynamically. At some juncture, observers reach a suçcient
degree of certainty concerning the state of the world around them and act upon
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that decision. The proposition that action can control perception is a result of this
view in which behaviour is continual and situated in the stream of reality (Powers
1973, Flach et al. 1995).

This capacity, to reduce uncertainty through exploration, is re¯ected in the asser-
tion that an object or concept and its opposite cannot co-exist. The corollary, that
the world can be divided into mutually exclusive categories, has been vital in human
evolution. It is indeed a fundamental characteristic of most human achievements.
For example, the very foundation of mathematics is predicated upon the concept of
number, and number is only possible if concrete items or objects are seen as suç-
ciently alike so that they may be grouped together in a set and others, by de®nition,
excluded from that set. Thus, if there were no primitive perceptual concept of set, the
whole basis for arithmetic itself would be compromised. The development of number
and, much later, formal set theory itself, is, thus, contingent upon intrinsic percep-
tual capabilities. However, perception itself is a complex and non-stationary ability
with signi®cant variability between individuals. What one observer classes as `signal’,
another observer will see as `noise’. Each may wish to separate the wheat from the
chaŒ; but they do so in very diŒerent ways. Therefore, what constitutes the `world’ is
always subject to the ®lter of perception, and so the nominal `real-world’ may indeed
appear diŒerent from individual to individual (Hume 1739).

Tanner, Swets, Green and their colleagues formalized these properties of the
detection of signals and noise and developed a mathematical approach now univer-
sally known as signal detection theory (SDT: Tanner and Swets 1954, Green and
Swets 1966). SDT has been widely applied in the evaluation of the accuracy of
diagnostic systems that seek to distinguish signal from noise (see for example
Swets and Pickett 1982, Sorkin and Woods 1985, Swets 1977, 1996). Due to the
range and success of SDT, this approach has been rightly characterized as one of the
most robust theories in the behavioural sciences and today it remains one of the most
powerful theoretical and also practical constructs in all of the human performance
literature. SDT has been used in a wide variety of settings, even as an investigative
tool to evaluate claims of paranormal activity (Jensen 1989). SDT divides the
observable world into two components. The ®rst, designated the `signal’ represents
a state of the world in which the pre-agreed target item or event is actually present as
a true `state of the world’. The second categorization, `noise’ represents background
¯uctuation of the environment which is, thus, composed of any form of stimulation
which is not the agreed `signal’. Of course, what constitutes a `signal’ is largely
arbitrary and is the subject of a pre-agreement between parties involved in the
detection process. As there is always some form of extraneous stimulation present,
the real distinction is between `noise’ and `signal plus noise’. Such a display, or
repeated displays are given to an observer who is forced into a choice between
either `yes’ the signal is present or `no’ the signal is not present (see Macmillan
and Creelman 1991). When the observer’s response accords to the true state of the
world, it is classed as a `hit’ when the signal is present and a `correct rejection’ when
there is only noise. However, observers are not always right. When the diŒerence
between the signal and the background is small and particularly when observers are
stressed, tired, bored, or frustrated or when many repeated responses are required,
observers make mistakes (see Davies and Parasuraman 1982, Hancock 1984, Warm
1984, Hancock and Warm 1989). When the observer responds positively but there is
in reality no signal present, one has a `false alarm’, and when the observer responds
negatively but a signal is actually present one has a `miss’. Through examining the
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combination of these four outcomes over repeated trials, one can provide an estimate
of how good the observer is in terms of quantitative measures of sensitivity and
response bias. The observer might be a human but equally well could be a machine,
since observation as a process is not restricted to living things. As a result of the
quantitative analysis that this procedure provides, it has proved particularly appeal-
ing to those with an engineering perspective, since `real’ numbers provide crucial
input into formal models and, thus, considerable comfort to those who deal with the
world in that fashion.

2. Some limits of signal detection theory

Despite the tremendous and deserved success that SDT has garnered, there are a
number of factors which restrict its application in practical terms, and these derive
from some intrinsic theoretical limits. Two such limitations are discussed below.

2.1. Knowing the state of the world
Traditional SDT requires the mapping of environmental events or sources of evi-
dence, the `evidence variable’ into two categorical states of the world that do not
overlap. In the laboratory, this is accomplished by the researcher, who controls the
stimuli which compose the experimental `world’. However, in the real-world, such a
mapping is fuzzy rather than discrete (see also Karwowski 1992). In most real-world
settings, the de®nition of a signal is context-dependent and varies with a plethora of
factors. Thus, to apply SDT in the real-world, one essentially has to know what the
true state of the world is. However, if this state was known a priori, then actual
detection would be obviated. Conversely, to know the true state of the world one has
to engage in some form of detection in the ®rst place. Whilst it is true that more and
more one is `creating’ the technical environments in which one works, this `circular-
ity’ of signal de®nition limits SDT. In fairness, of course, the question of the true
state of the world will plague any proposed detection theory. However, the problem
of non-stable categorization of signal and noise is fundamentally a temporal one,
and it is the dimension of time which represents the major concern.

2.2. The temporal dimension of signal detection
In the authors’ view, the greatest limitation to the ubiquity of SDT is the problem of
time. As the fundamental dimension of existence, time can not be halted or rolled
back. Events are conceived as occurring `in time’, or time is viewed as an emergent
property of event occurrence (cf., Gibson 1975, Hancock 1993). Thus, when a deci-
sion or detection is made is at least as important as what decision or detection is
made. At present, current formulations of SDT in the main do not address the
temporal dimension directly. For example, in classic SDT, there is no speci®c
mechanism to determine the latency of response. Whilst hit, miss, false alarm, and
correct rejection are the four possible outcomes, nothing indicates when these
responses will occur, either within an individual response or across a series of
responses. Typically, this is because the methods used in SDT research arti®cially
in¯uence the time factor, either by temporal limitations on response or by some
other experimental manipulation which quizzes observers in the spatial domain
but restricts them in the temporal domain. In the real world, there may indeed be
time limits imposed by the natural constraints of a task at hand. Often, as in com-
petition chess, a time limit has to be imposed, since endless prevarication renders the
very phenomenon moot. However, when to respond is an observer choice not an
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experimenter’s decision. Thus, in SDT, when the detection response occurs is unspe-
ci®ed and so represents a crucial missing piece of the jigsaw in behavioural predic-
tion. SDT, therefore, takes a photograph or `snapshot’ of the signal/response event.
Further, SDT is typically applied when an individual or a machine engages in a series
of observations or judgements, giving repeated opportunities for evaluating their
capability. In such circumstances, SDT provides much information on average,
about the summed ability to respond across trials. What is missing is the prediction
of the sequential eŒects embedded in a series of responses. That is, where do hit,
miss, false alarm, and correct rejection occur sequentially in the response stream as
diŒering states of the world are presented for consideration. The purpose here is to
address such questions and to provide a construct which may help in their resolution.

2.3. Purpose of this paper
The fundamentals of Fuzzy Signal Detection Theory have been described in
Parasuraman et al. (2000). This paper elaborates on this hybrid theory to address
the fundamentals of detection response. Through the combination of fuzzy set the-
ory (Zadeh 1965) and classical SDT, an approach is posited to provide avenues
through which the calculation and prediction of detection behaviour can be evalu-
ated in real settings. Extensions of Fuzzy SDT are also considered using other theor-
etical approaches such as catastrophe theory (see Thom 1975, Zeeman 1977) to
discuss broader implications to a general formulation on the prediction of human
behaviour.

3. Fuzzy signal detection theory: basic postulates

Whilst SDT has proved an important analytical technique, fuzzy set theory has
likewise represented an important quantitative approach to capture the understand-
ing of phenomena. Although not without its critics (Gardner 1995), fuzzy set theory
has proved helpful in many realms (see Kosko 1993, 1997), including issues related to
ergonomic concerns (see Chignell and Hancock 1986, Karwowski and Mital 1986).
Given the value of these two approaches, it may be anticipated that a union of the
two techniques would represent a valuable theory and analytic methodology. Para-
suraman et al. (2000) have proposed a direct application of fuzzy logic to the classi-
cal methods of SDT and provided examples of how the traditional SDT parameters
can be calculated when the degree to which a signal has occurred and the degree to
which a response has been made are not collapsed or `rounded’ to 0 or 1 at any point
in the analysis. The fuzzy SDT analysis developed by Parasuraman et al. (2000)
involves four steps, which are outlined below:

(1) Selection of mapping functions for states of the world (SOW) and responses.
Whereas, in traditional SDT, the SOW is divided in a binary fashion into
either signal or noise, Fuzzy SDT assigns each possible SOW to a degree of
signal, s, between 0 and 1. Thus, a particular set of physical variables corre-
sponding to the SOW may represent a signal, but only to a degree, say
s ˆ 0:7. If the SOW is less signal-like and more noise like, s may have a
smaller value, say s ˆ 0:2. The function that maps the SOW to s is known as
the mapping function. Each possible response that can be made by the obser-
ver to events can also be assigned a response degree r between 0±1. The
response degree might correspond to the observer’s con®dence that a signal
occurred, or to some measure of reported signal criticality or intensity. For
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example, r ˆ 0:9 could represent a high degree of con®dence that the event
was a signal.

(2) Use of implication functions. In traditional SDT, logical IF-THEN functions
can be used to determine the outcome categories of the detection system. For
example, if the event is a signal (s ˆ 1) and the observer’s response is positive
(r ˆ 1), then the outcome is a `Hit’. That is, the outcome category of hit has a
value of H ˆ 1 and the remaining three categories, misses (M), false alarms
(FA), and correct rejections (CR) have values of 0. Similarly, if the observer
responded negatively (r ˆ 0), then M ˆ 1, and H, FA, and CR are all 0. In
Fuzzy SDT, however, a given event-response pair may belong to some degree
to more than one outcome. For example, suppose s ˆ 0:9, i.e. the SOW
strongly but not absolutely points to a signal. Suppose the observer responds
with r ˆ 0:8, i.e. strongly but not unequivocally responds positively that the
event was a signal. Then, whereas traditional SDT would classify the out-
come as only a hit (H ˆ 1), Fuzzy SDT classi®es the outcome as mostly a hit,
but also, to a small degree, a miss and a correct rejection. Parasuraman et al.
(2000) proposed a set of implication functions for deriving the fuzzy set
memberships of the four outcomes, as follows:

Hit: H 5 min (s, r)
Miss: M 5 max (s±r, 0)
False alarm: FA 5 max (r±s, 0)
Correct rejection: CR 5 min (1±s, 1±r)

Thus, in this example, whereas in traditional SDT, H ˆ 1 and
M ˆ FA ˆ CR ˆ 0, in Fuzzy SDT, H ˆ 0:8, M ˆ 0:1, FA ˆ 0, and
CR ˆ 0:1. Note that, in both traditional and fuzzy SDT, the outcome mem-
berships always sum to 1. In essence, Fuzzy SDT partitions some of the
categorical set membership of traditional SDT (H ˆ 1) into the other out-
comes.

(3) Computation of fuzzy hit and false alarm rates. This step involves the calcula-
tion, across n trials or observations, of the weighted average of the set
membership values for two of the four outcomes: Hits and False alarms.
The weight for Hits is the average of the signal membership values (s) across
the n trials; that for false alarms is the average of noise membership values
(1±s) across the n trials.

(4) Computation of fuzzy sensitivity and criterion measures. This step is straight-
forward and involves the computation of sensitivity (e.g. d 0) and criterion
(e.g. û) measures from the fuzzy hit and false alarm rates computed in step 3.
This step is essentially the same as in traditional SDT.

Using a reanalysis of data from two studies involving aircraft con¯ict detection in
air traçc control (ATC), Masalonis and Parasuraman (2000) have demonstrated
that Fuzzy SDT provided additional insight in detection performance over that
derived from traditional SDT. Analysis of detection performance of an automated
con¯ict detection system in a low-signal, real-world environment resulted in a lower
value of hit and false alarm as compared with the traditional SDT method. Fuzzy
SDT resulted in a lower hit rate and false alarm rate because it more accurately
captured the fact that a number of `signals’ (near-con¯icts between aircraft) were
present. Such events may have required attention, despite not being full-¯edged
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signals according to an arbitrary cutoŒ. Masalonis and Parasuraman acknowledge
the possibility that their results were a function of the way that fuzzy values of s
(signal) and r (response) were assigned for the analysis, and that diŒerent assign-
ments might have resulted in diŒerent ®ndings when comparing Fuzzy SDT and
traditional SDT. Most important, the Fuzzy SDT analysis provided points to poten-
tial areas of improvement in the performance of the automation not apparent from
traditional SDT analysis.

4. Time and fuzzy SDT

4.1. The temporal component
Parasuraman et al. (2000) sought to establish the bene®ts of allowing the `gray areas’
of signal and response de®nition into SDT analyses. In addition to the gradations
that are possible in the objective de®nitions of these parameters, an additional fuzzi-
ness is injected by probability (Karwowski 1992). Whatever the extent of the fuzzi-
ness of the actual state of the world, the perception of that state can also be fuzzy.
This is probably more true of a detector running on analogue hardware (such as a
human), but can, in principal, be true of any detector. One way this component of
fuzziness can be represented is as a probability that the stimulus is a signal. This
probability judgement may change over time as more information is acquired. Sti-
muli, and/or perceptions thereof, resolve over space and time such that an observer’s
understanding of what is being presented and what response is appropriate, evolves
dynamically. Under these conditions, the `signalness’ of the environment and the
response that ought to be emitted remain uncertain and change as information is
assimilated. Traditional SDT can not deal directly with these dynamic cases, being
essentially an atemporal method that represents a momentary `snapshot’ judgement.
The usual ®nesse of this problem is to repeat a SDT analysis many times. This may
be possible in the experimental laboratory but is much more problematic in real-
world situations. This paper discusses the temporal component of SDT by allowing
that the mathematical characteristics of sensation and perception of a given stimulus
can change over time as information is accumulated. In essence, as has been noted,
the momentary judgement taking place in traditional SDT takes a black and white
`snapshot’ of events. Fuzzy SDT provides a photograph in vibrant colour but is, at
this stage, still a static representation. Adding the temporal component captures the
dynamics inherent in most real-world decision-making situations. Temporal Fuzzy
SDT takes a `movie’. In the real-world, events unfold in time. Thus, the value of a
signal (s) varies between high and low values but rarely reaches an unequivocal value
of either 0 or 1. Thus, as has been noted (Parasuraman et al. 2000), a more complete
description of the signal mapping function based on SW (state of the world) would
not be s ˆ f(SW), but rather s ˆ f(SW, t), although in reality t is always a world
property.

4.2. The timing of response
A tradition in experimental psychology publications, not ubiquitous but very com-
mon, is to divide results into two sections, one reporting the eŒects of the indepen-
dent variables of interest on response time for those trials that resulted in a hit, and
another, often briefer, missive reporting the number and/or percentage of misses,
false alarms and correct rejections. In a task with time urgency, which to some degree
describes the vast majority of laboratory and real-world tasks, speed-accuracy trade-
oŒs come into play. In the laboratory, one can constrain a time limit for judgement,
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but this is a paradigmatic manipulation, not an attribute of SDT per se. What is a
miss? Typically, a miss is considered as a lack of response after an arbitrary period of
time. What if the observer were `simply thinking about it’? Framed in the perspective
of a real-world problem, there is usually a time limit associated with a decision being
made (e.g. in driving a car it is far preferable to decide upon, execute, and complete
the braking manoeuvre before the vehicle impacts the brick wall). However, faster is
not always necessarily better, especially if there are costs associated with a false
alarm (brake wear and tear, embarrassment, or, most signi®cantly, being rear-
ended). These factors are also important when detection is assisted with a colli-
sion-avoidance system that has its own detection sensitivity and latency (Parasura-
man et al. 1997). In the real world, the detection system, because (s)he/it/they are
trying to accumulate the most accurate possible assessment of the environment
before deciding, may not respond until it is absolutely necessary. Indeed, the same
may occur in a laboratory task, depending on the degree to which speed and accu-
racy are prioritized. Under these circumstances, the diŒerence between a miss and a
`delayed hit’ might be diçcult to distinguish unambiguously.

One of the central questions that should be resolved in detection behaviour is
when a response will occur. In using Fuzzy SDT, one has the opportunity to explore
this question in depth. Hancock and Pierce (1989) indicated that there is indeed such
a dependency and that this relation could be demonstrated through a linkage
between SDT and catastrophe theory (CT) (see Cobb 1981, Stewart and Peregoy
1983, Guastello 1984, Guastello and McGee 1987; but also see Sussmann and Zahler
1978), where repeated CRs can lead to FAs, due to the expectancy (following numer-
ous non-signal events) that it (the signal) `has to happen sometime’. To the authors’
knowledge, these within-response and across-response temporal dependencies have
not been explored to date. It is proposed here that, for an individual response, the
timing of that response is dictated by the ratio of the Fuzzy-set membership func-
tions in the major categories of signal detection. Since it is easier to illustrate this in
the case of making a response, i.e. a hit or FA, rather than inhibiting a response, i.e. a
miss or CR, the former cases will be dealt with here. Imagine that a display has been
presented in which the discriminative diŒerence between noise and signal plus noise
is at or near detection threshold. Obviously, the closer to threshold, in general, the
longer the time taken to respond, where such temporal freedom is permitted. It is
suggested that evidentiary accumulation occurs until the ratio of the hit vs. FA
membership function fractures some preset value (referring to the case of experience
and previous responses). At that point in time, the response is made which represents
that persuasion. In terms of catastrophe theory, or more recently complexity theory,
the response `falls’ into one of the attractor wells. Clearly, to fully articulate this
notion, one would have to specify where the individual `started’ on the attractor
space and what the relevant ratio for response would have to be. Further, this would
have to be a very strong a priori speci®cation since a model with the potential degrees
of freedom this contains would provide seductive post hoc interpretational appeal.
However, in principle, this prior speci®cation could be achieved.

In addition to knowing the momentary value for the response ratio, one would
have to understand the nature of the `surface’ of response upon which the individual
is operating. Therefore, a sequential dependency in the stream of responses is pos-
tulated, or, more generally, a detection system’s propensity to respond is predicated
upon previous experience. Of course, with clearly deterministic machine systems that
do not alter such values, no learning is possible. Such systems are static and, whilst
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they do not vary in quality of detection, they also have no manner of improving.
Given the case of a system (like a human being) that learns, is there any data which
might provide such insights into what the `surface’ of response looks like?
Fortunately, there is. Parasuraman and Davies (1976) conducted a vigilance experi-
ment in which classic signal detection was employed that derived response times in
all four categories. As with most sustained attention tasks, the actual signal rate was
very low and, thus, the number of non-signal events was high and subjects had
predominantly to respond with a rejection. Whilst this is true as a general character
of vigilance, it need not necessarily be true of all detection tasks and, indeed, the
response `surface’ generated can, in some sense, be said to characterize the type of
task under consideration. The response surface as derived from these data is shown
in ®gures 1 and 2.

It is proposed that, crude as these surfaces are, they show how the sequential
response between the four categories might be related. The surfaces are necessarily
`crude’, since there are only four possible categories of response in classic SDT.
However, it is postulated that when Fuzzy SDT is applied to this notion of surface
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Figure 1. Response surface of temporal latency of hits, misses, correct rejections and false
alarms. Redrawn from Parasuraman and Davies (1976).



topology then the 0/1 nature of the collapsed response is obviated and the full
complexity of the response surface may be revealed. Of course, after a deterministic
response occurs, the collapse to either a yes or no response state is inevitable. From
®gure 1, it is suggested that, in this typical vigilance environment, the stable state is
correct rejection. Thus, for a sequence of responses, contingent upon the true `state
of the world’ as dictated by the experimenter (or a random number table), a pro-
longed series of response inhibitions are required. However, these inhibitions are not
neutral events. In this proposal, these sequential inhibitions act to change the thresh-
old of the ratio between fuzzy categories so that, in the present case, a positive
response becomes ever more likely. At some point along the sequence, one of two
events occurs. Either an actual target comes up, in which case the ratio for the
positive response is triggered (being a hit), or a display is presented in which an
apparent suçciency of evidence appears to occur, so that a false alarm is triggered.
Note also that such a triggering is crucially dependent upon experience. Thus, in an
experimental setting the occurrence of a false alarm is based on how `trigger happy’
the participant is–more formally their ≠-level. ≠ is directly dependent upon the
training of what constitutes a signal early in the procedure and the history of pro-
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gression (and of course feedback) later in the procedure which will calibrate the
participant’s expectation about the overall base rate of a signal and about the like-
lihood that the next event will contain a signal. All the same factors, of course, are at
work in real-world settings.

At fast times, almost any response that is made will be a false alarm–most likely,
a false button press. If many of the responses at very fast RTs (times faster than a
minimum simple RT of, say, 150 ms) were Hits, one might assume the subject was
guessing as opposed to actually detecting, processing, and responding to the signal.
Moving to slightly longer response times, one encounters most veridical hits. For
even slower responses, one eventually reaches the point where the misses and correct
rejections are more common–as is known from the perception work of Treisman
and Gelade (1980), a `signal absent’ response generally takes longer to decide upon
than a `signal present’ one, especially when much distraction is present. The longest
response times are more likely to be correct rejections than misses, on the assumption
that for a typical correct rejection the detector will have more carefully considered
more of the available information and used up more time, whilst an incorrect signal-
absent judgement (miss) may occur due to an overly hurried judgement, perhaps
stemming from the inverse of the `gambler’s fallacy’ (it’s got to not happen some-
time). A hypothetical probability distribution of the four conventional SDT out-
comes, as a function of response time is illustrated later in ®gure 5.

5. An air-traçc control example

To illustrate these conceptions further, the example of air traçc control given by
Masalonis and Parasuraman (2000) is expanded upon. The seriousness of a con¯ict
between two aircraft can be expressed in terms of the number of miles apart that the
aircraft will be when they are at minimum separation. The distance apart is not the
only thing that must be considered in the decision as to how worthy of attention a
con¯ict is. The temporal factor is very important as well: if the aircraft are closing at
a nearly head-on angle, then less time is available to deal with the situation. Con¯ict
probes such as CPTP (Con¯ict Prediction and Trajectory Planning; Paielli and
Erzberger 1997) take this into account by listing predicted con¯icts in the chrono-
logical order in which they are predicted to occur. However, the ultimate area of
concern is how close the aircraft are going to approach. There is some objectively
true value of this minimum separation, but, due to factors such as winds and pilot
actions, this value can not be known with 100% certainty until the actual time when
the minimum separation occurs.{

Therefore, one can make a graph illustrating the distribution of the possible ®nal
separation values and the probability of each being correct. The distribution will
change with time until, at the time of minimum separation, it approaches or becomes
a vertical line at the x-value representing the minimum separation.{ For an example,
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{ The issue of the certainty of measurement is ignored for now. According to Heisenberg,
fundamental position cannot be measured with complete accuracy, at least not if one is also to
know momentum. Accuracy of position measurement goes beyond the worlds of particle and
quantum physics. In ATC, for example, the radar used to determine aircraft position possesses
margins of error that are part of the reason behind the seemingly conservative separation
standards (e.g. 5 nautical miles of lateral separation in cruise ¯ight in the US) used in ATC.

{ `Approaches or becomes’, depending on whether perfect measurement is assumed; see
above footnote.



take ®gure 3, which presents the likelihood that a hypothetical con¯ict detector will
report a ®nal minimum separation of various distances, given that the actual separa-
tion will be 6 nm. At early times (times 1 and 2, for example), the distribution of
likely values for minimum separation is wide; certainty increasing as the time of the
event approaches.

5.1. Sensitivity and bias
In analysing the performance of a detection system, Fuzzy SDT can be used to
simply take a `snapshot’ of how accurate the detection was at the point the decision
was made, by comparing the fuzzy decision at that given time to the actual value for
separation. Over many trials with an equal value of separation and an equal amount
of look-ahead time, a distribution similar to one of the above time distributions
might be seen. By determining, in a fuzzy fashion, how much of a Hit, Miss, FA,
and CR the response generated for each trial, measures can be derived of how
sensitive and how liberal the detector was at the given time. There is no reason,
by the way, that one would have to do this for only one value of separation; in fact
the beauty of Fuzzy SDT is that one could have the detector make predictions in
situations that would resolve to a number of diŒerent values of separation, assess its
prediction each time, and derive versions of the standard measures of sensitivity and
bias. If Fuzzy SDT parameters were calculated at a number of look-ahead times, one
would expect the sensitivity–of an ATC con¯ict tool or indeed of any detection
system predicting values of an analogue parameter–to increase as the time of the
event approached, as the con¯ict detector became less of a 4-dimensional telescope,
as it were, and more of a yardstick placed ¯ush (in the temporal dimension) against a
3-dimensional situation that is now being more `measured’ than `predicted’ (see
Brunswik 1955). The time-based eŒects on bias would be harder to predict and
would depend on a number of factors. The way that the temporal dimension turns
a `snapshot’ into a movie has been discussed. One can take a movie with traditional
SDT, but a very dull and uninformative movie would result as the screen would
suddenly go from white to black or vice versa (if in fact it changes at all). This is
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Figure 3. Distribution of predictions by a hypothetical con¯ict detector as to separation
values between two aircraft that will experience a minimum separation of 6.0 nm.



illustrated graphically in ®gure 4, which represents a hypothetical ATC con¯ict
detection case, where the actual ®nal separation between two aircraft will be 6
nautical miles. The detector’s uncertainty about the actual separation–as illustrated
in ®gure 3–starts large and shrinks as time goes on. Therefore, at early times the
probability that the separation will be less than the 5 nautical miles criterion is some
non-zero value. If the true separation is 6 nautical miles, the probability of a separa-
tion below 5 nautical miles decreases smoothly as the time of closest approach draws
near. Assuming that the alerting function is liberal (prone to report con¯icts) and
binary, and reports a potential con¯ict if the probability that the aircraft will
approach within 5 nautical miles is greater than 30% , then in this case the user
sees a `yes’ judgment that a con¯ict will occur until time T-4 when the detection
system changes to report no con¯ict.

5.2. Alternative signal and response deWnitions
In Parasuraman et al. (2000), it is suggested that the value of `s’, the extent to which
an event contained a signal, and the value of `r’, the extent to which a response was
made, must map into the range from zero to one. This enables a more faithful
mapping of Fuzzy SDT analysis onto the mathematics of traditional SDT. However,
other means can be proposed for analysing these situations. In any application where
the variable of interest is de®nable along a continuum, the progression from the
objective `truth’ to the response and the result thereof can be thought of in terms
of a series of continua. First, there is the `truth’ continuum, and one will continue
with the example of air traçc control. The seriousness of a con¯ict between two
aircraft can be expressed in terms of the number of miles apart that the planes will be
when they are at minimum separation. The detection system must make an accurate
judgement of where along this continuum the truth lies. It will then report the truth
as it sees it. The report might involve a judgement of where along the continuum the
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truth actually lies. Alternatively, it may be a binary judgement about whether there
will be a loss of separation, or what action the controller should take.{

The process can become a bit complex in the case of a multiple-detector system,
because the output of one system component–the response–serves as the input–
the signal–for the next component. In air traçc control, the objective truth, the
state of the world, is that plane x and plane y will come within exactly 6 miles of each
other in 8 minutes. The value of 6.0 miles is one exact point on the continuum and,
after the fact, can be known as exactly the right answer (ignoring measurement
error). The con¯ict detection automation analyses the ¯ight paths of the two aircraft
and might determine a number of things. The parameters it would estimate might
include the most likely separation distance:

(1) The most likely separation distance.
(2) A distribution of possible separation distances and the probability of each.
(3) A probability that the legal limits of 5.0 nm, or some other cut-oŒ point will

be violated.
(4) A con®dence judgement of #1 and #2.

In the case of #1 and #2, the reported distance is a point along a continuum and
there may be little value in forcing it into a [0, 1] range just so that traditional
analyses can be done. In case #3, there is more precedent for mapping a con®dence
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{ At some point in many decision processes, as discussed in Parasuraman et al. (2000), a
fuzzy input must be mapped to a discrete response, known in fuzzy logic control as de-
fuzzi®cation. The present discussion makes the point that discretization of a signal-response
situation can occur at any point in the process. This can be done at the very start of the
process, i.e. the de®nition of the signal can be collapsed to a binary state, or can be done in the
next step, i.e. the judgement reported to the user (in this case the controller) is binary (in this
case `con¯ict/no con¯ict’), or later in the process. It is the authors’ contention that if binary
clipping must be done, the later it is done the better (i.e. at the stage when the ®nal response is
made).



judgement to a [0, 1] space, but it is arguable whether this is a true interval scale: does
a `con®dence’ of 100% mean twice as much con®dence as 50% ? What does it even
mean to say `twice as much con®dence?’ A probability (#4), however, maps easily
into the range between zero and one.

An advanced automated detector could compute all these parameters and more
for every pair of aircraft in the area without much trouble (Paielli and Erzberger
1997). The question then becomes how to report this information to the next com-
ponent in the system–here, the controller. There are many possibilities, but what
one is concerned with for the present discussion is the degree to which the auto-
mation’s report of the `truth’ is fuzzy. It may be binary (`there will be a con¯ict’ is a
binary report, and even `there is a greater than 80% chance that there will be a
con¯ict’ is a binary report). In such a case, the signal that the controller detects–the
report of the automation–is binary, but this need not mean that the process must
cease to be fuzzy at this point. Other information is available besides the report of
the automation, such as the radar display of aircraft locations and directions, and
the controller’s memory of past situations and how the current situation compares
with them. The controller may, therefore, use the binary fact that a con¯ict has been
reported, and integrate this with the other data (s)he has available, in order to come
up with a `re-fuzzi®ed’ judgement of the probability that a con¯ict will occur, or a
value representing the eventual separation distance (potentially in zero-to-one space
but quite possibly in actual units). This, in turn, will aŒect how quickly a clearance
(instructions to change ¯ight parameters such as course or altitude) is given, if at all,
and perhaps with what degree of urgency it is communicated to the pilot, who, in
turn, will make or fail to make a response based upon that signal. This process can
be a closed loop, since pilot responses to clearances from the ground may, in turn, by
their expeditiousness and the perceived success of the manoeuvre, act as signals
aŒecting controllers’ decisions regarding another kind of response, i.e. whether
and to what extent they should monitor the cleared aircraft for conformance to
the clearance. Pilot responses to clearances not only bear on the present situation,
but also can create new con¯icts–new signals to detect. Such a cascade eŒect is
especially possible in the crowded airspaces which the ever-increasing demand for air
transport is fostering.

6. Additional analytic frameworks

6.1. RedeWning signal and response
It was questioned in the ATC example how much value there was in forcing a
parameter that varies along a continuum in a [0, 1] range just to perform conven-
tional SDT analysis. To handle these kinds of cases, where a [0, 1] mapping might be
excessively arbitrary, it may be desirable to use diŒerent methods of analysis. One
possibility is to use the mean and/or variance of the error score between the predicted
and actual values on the parameter being detected. A mean negative error score (e.g.
consistently reporting 5 nm for 6-nm separations) would show a liberally-biased
system,{ whilst a positive error score would show conservatism. The absolute
value of the mean error score (or the variance of the response if the `truth’ or goal
were always the same, as in RMSE as a measure of tracking performance) would be
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{ That is, liberal in terms of reporting con¯icts that were more serious than they actually
were.



a measure of sensitivity, and its variance would be an additional measure of predict-
ability of the system; i.e. would its sensitivity and bias be consistent. A multiple
regression of predicted values on actual values would accomplish more or less the
same thing and, whilst not directly an SDT analysis and hence not directly compar-
able to traditional SDT in the way that the Fuzzy SDT methods originally outlined
are, would provide a richer set of results than the output of a traditional SDT
analysis.

6.2. Applying fuzzy SDT to the cycle of automation design and use
One could criticize that, in real world applications, the fuzzi®cation inherent in a
detection systems’ con®dence in its judgement is irrelevant, because, in the end, it
either does or does not act as though a signal is present. However, at least in the case
of a human making a decision, self-con®dence as to whether one is executing the
correct response can have very important consequences. For example, a decision of
which a person is more sure will probably be executed more quickly–for better or
worse. In addition, if communication with another agent is involved, the person’s
level of con®dence may impact the result. In the case of ATC, a controller who
decides that a command must be given to a pilot in order to avert a potential con¯ict
may use speci®ed phraseology (e.g. `immediate,’ or `expedite’), or may issue the
command in a more authoritative tone of voice if (s)he is more certain that a con¯ict
or collision will result without intervention. Since the response of the controller to
the potential con¯ict becomes, in turn, a signal to the pilot, the perceived con®dence
or urgency of the controller’s command may aŒect the amount of time the pilot takes
to execute the clearance, or may even aŒect the pilot’s decision whether or not to
question the clearance.{

The foregoing discussion of the cyclical, closed-loop nature of many signal detec-
tion tasks has omitted one step in the process. This has been purposeful in order that
one might close the `loop’ at this point in the discussion. The heretofore-omitted step
refers to the point at the beginning of the task, when a decision is made as to how a
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{ The same dynamics are at play on the battle®eld and in the oçce. A commander or
supervisor who gives an order has been taught to always project con®dence. In eŒect, this
results in a `squashing’ function where, no matter how sure the superior is that something
needs to be done, (s)he may always communicate it with the same level of authority. This may
argue that a better commander is one who uses a wider range of con®dence when giving orders
(perhaps always staying in the upper range, but varying across it). More to the point, it also
has implications for automation design. Although the analogy between a human user of
automation and a human supervisor of another human is often made, when one begins to
speak of decision making or decision aiding automation, it may be more accurate to conceive
of the automation as the supervisor. It has more information about the parameters that go
into a necessary decision, but might integrate the parameters and derive a ®nal answer that it
provides to the human. Whether it somehow represents its con®dence in its own decision is a
question to consider. The past behaviour of the supervisor, the controller, the automation–
has (s)he/it been right in the past?–will likely be combined with perceived or reported con-
®dence in order to decide whether or how expeditiously to execute the suggestion or command.
These considerations illustrate how the degree of trust vested by the user in himself or herself
and in the automation (see Lee and Moray 1992, Masalonis 2000) combines with other factors,
such as the reported con®dence of the judgement, to produce a response decision. Of course, as
discussed throughout this section, the trust, reported con®dence, and ®nal decision are all
amenable to fuzzy representation.



signal should be de®ned. Here, one is referring to con®gurable decision-aiding auto-
mation, where the operator can set a threshold(s) that predetermines what states of
the world will cause a response by the automation. Fuzzy and/or binary decisions
can enter into the situation at this phase. For example, the ATC con¯ict probe
known as CPTP allows controllers to specify cutoŒs of lateral and vertical separation
beyond which the automation will not report con¯icts. This is an example of taking a
variable de®ned along a continuum, viz. separation, and being permitted to set a
cutoŒ at any reasonable point along the continuum–a cutoŒ that will cleave all
states of the world into either `con¯ict’ or `no con¯ict’.{ The `story’ of CPTP use,
from beginning to end and back, goes as follows.

. The designer allows the user to specify a cutoŒ, a hard line beyond which all
states of the world will be binarily assigned to a signal value of zero.

. The user (controller)–based on past experience on the job and perhaps with
this automation– sets the cutoŒ along a continuum (say, 5±50 nm).

. The automation looks at states of the world that vary along a continuum
(separation between each pair of aircraft).

. The automation makes a judgement about future con¯icts along that same
continuum and also makes judgements about each con¯ict along the con-
tinuum of probability (0±1).

. The controller receives this information. At this stage, it is assumed that the
controller receives a 100% accurate representation of the automation’s judge-
ments through the human±computer interface. That is, the interface and envir-
onment are such that the controller sees or hears the automation’s decision,
and correctly interprets its meaning. There is no loss of information or fuzzi-
®cation from the previous stage.

. The controller makes a binary but fuzzi®able decision. The decision is binary
in that the controller either does or does not issue a clearance, and is fuzzy in
that a greater or lesser amount of time will elapse before the clearance is given
(due to the degree of certainty about the con¯ict and the degree to which this
particular potential con¯ict is prioritized relative to other situations and tasks).
It is fuzzy in that the clearance may be given with more of less urgency (due to
the degree of certainty or perceived seriousness).

. The pilot’s response does or does not meet an end goal (prevention of an
operational error), and can be said to meet or fail to meet that goal with
varying degree.

. In turn, the result of the `trial’ may aŒect future decisions by the controller as
to where to set the criterion in the future (or how much to trust the automation
and how much to use it in the future; Lee and Moray 1992, Masalonis 2000).

A circumstance which tends more towards a binary situation is found in some
radar detectors for automobiles, which allow the user to set a switch on either `city’
or `highway’, the former having a higher ≠ in order to reduce the false alarms caused
by the plethora of objects found in urban settings. In this example, the automation
designer has set two cut-oŒ levels between which the user can choose. Each of these
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{ It should be reiterated that the CPTP con¯ict probe, while necessarily using some user-
speci®ed cutoŒ for which situations to report as con¯icts, does provide some fuzziness in its
responses, by presenting the actual value for predicted separation rather than simply yes/no,
and if controller desires, presenting the probability that a con¯ict will occur.



will divide all possible levels of the evidence variable into `object’ or `no object’, but
some intermediate evidence levels will be classi®ed as `radar’ by the `highway’ setting
but as `no radar’ by the `city’ setting. It has been suggested (Lehto et al. 1998) that a
useful feature on radar detectors would be a dial permitting users to vary the detec-
tor’s sensitivity along a continuum. The output would still be binary. Therefore, the
progression of events would be as follows.

. The automation designer decides to make the criterion con®gurable along a
continuum (high-to-low sensitivity).

. The user selects a point on that continuum.

. This point then serves as the cutoŒ point for the detector’s binary judgement
(object present or absent). It should be noted as an aside here that the user’s
car may be in the police’s radar beam to diŒerent extents, aŒecting the accu-
racy of the radar itself).

. The binary judgement of the radar detector tells the user about a binary `truth’
or state of the world (object present or absent). As in the ATC example, one
assumes no loss of information or fuzzi®cation from the previous stage: the
driver receives a 100% accurate representation of the detector’s binary judge-
ment regarding radar presence/absence (hears and correctly interprets the
alarm).

. The output of the detector (along with other information available to the user)
leads to a binary but fuzzi®able decision. The decision is binary in that the
driver either will slow down or will not. The decision is fuzzy because the driver
may slow down with diŒerent latency and diŒerent acceleration rates, decisions
based in part on their con®dence in the presence of radar and assessment of the
degree of discrepancy between current velocity and desired velocity.

. The environmental result–that is, the success and timeliness of the action of
braking leads to a non-binary (but basically categorical) level of success at
achieving the end goal (the result is either ticket/no ticket, or warning).

. As in ATC, the results of a `trial’ lead in turn to future decisions about cri-
terion setting, automation trust and automation use.

7. Wider implications

7.1. ScientiWc phenomena as signals
Having examined the foundations of Fuzzy SDT and its application, the discussion
is now broadened to include wider implications of the concept that has been
advanced. States of the world are not unambiguous; categorization is necessary if
one is to accomplish one’s goals. The purpose of techniques, procedures and theories
such as SDT is to provide ways of helping distinguish diŒerences. This is undeniably
helpful, and the authors are the last to suggest otherwise. However, in order to use
such techniques, one must initially have a method of deciding into which group,
signal or noise, to place each observation. This might seem facile, since instruments
of measurement are often used for such purposes and, in today’s computer-driven
world, one can easily become oblivious to the fact that such an initial decision must
be made. Where the fact of this initial process is not recognized, subsequent ®ndings
and outcomes can induce a sense of con®dence and certainty which is unjusti®ed.
The realm of research physics provides useful and important examples. In modern
research in advanced physics, progress is crucially dependent upon sophisticated
discrimination of diŒerences at the edge of possible observation. In both celestial
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and quantum mechanics, empirical observation occurs at levels of discrimination
which would stagger the scientists of only a generation ago. Although the principle
holds true for contemporary work, perhaps an example from early physical research
best illustrates the point.

Whilst trying to polarize the newly discovered x-rays, the well-known French
physicist Blondot claimed to have discovered a new form of radiation, named after
his city of residence. Using prisms and lenses made of aluminum, Blondot claimed to
be able to observe a spectrum of these n-rays by passing through it a ®ne thread
coated with ¯uorescent material. Many individuals also claimed to see this phenom-
ena, which was at or close to the then limits of observation. For a number of reasons,
n-rays were eventually `debunked’ as unreal (Randi 1982, Youngson 1998) and they
are no longer discussed in the research literature in physics. However, the combina-
tion of pronouncements of an admired individual and observations close to detection
limits led to this unfortunate misidenti®cation. It is all too easy to `blame’ the
observer/discoverer here, but this is to be anachronistic and to fail to understand
the milieu of research physics around the turn of the century. The central point of the
story is that at or near discrimination limits human detectors, in this case trained
scientists and observers, can `fool’ themselves into believing they have detected
phenomena which actually are not real. The same is true of machine detectors
programmed by humans.

7.2. Direction and magnitude of temporal s±r relationships
Within the framework of temporal analysis, it is interesting to note that either fuzzy
or traditional SDT can be and is applied to situations with diŒerent temporal rela-
tionships between signal and response. This variety of situation can be classed into
`what was, what is, and what will come’, and can be explained most clearly through
examples. Consider signal detection applications in the criminal justice system. Here,
the signal might be represented by something that has already occurred–a crime. It
is after the fact that the justice system attempts to determine whether a given suspect
is responsible, using information subject to decay (e.g. loss of physical evidence,
memory decay in eyewitness accounts). In contrast is the aircraft con¯ict detection
example discussed above, in which future events are to be considered. This task,
whether performed by human, machine, or both in tandem, attempts to derive a
response regarding the degree of presence of a signal which has yet to occur. This
type of detection, the task of prediction, faces its own set of challenges. Between the
time the prediction is made and the time the signal actually occurs–or more con-
gruently with Temporal Fuzzy SDT principles, the time when it is known with
maximum certainty the extent to which the occurrence is a signal–any number of
factors beyond the control or even the knowledge of the detection system might
intervene to change the environment about which prediction was made.

As captured in ®gure 3, the further in time the signal and response are apart, the
more uncertainty there will be regarding the degree of signal presence. This is true
whether a response action anticipates or follows the signal. Therefore, the best
predictions on average should be made when the signal and the response are essen-
tially concurrent. They can not be exactly concurrent because of fundamental lags.
For example, in the radar detector example, a `yes’ conveys information about what
has already happened. Some systems have detection lags in the order of micro-
seconds and so can appear to the observer to be virtually instantaneous. Other
systems have much longer lags and aŒect behaviour accordingly. Assuming that
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`what is’ equals `what was’ is not always a good idea. For example, the last battle of
the US Civil War was fought in the very southern-most part of Texas, many weeks
after the oçcial cessation of hostilities, illustrating that communication lags are
nearly always crucial concerns. Most relevant information today travels much
more quickly, and response times often need to be comparatively fast. Figure 3
has the same implications whether the scale of the base axis is nanoseconds or
centuries, and whether the signal and response are really occurring at diŒerent
times or whether the time discrepancy is caused by an information lag. The analysis
methods proposed here can capture the dynamic nature of both perception and
truth, regardless of time scale.

As has been noted, SDT is an exceptionally useful evaluative procedure, but it is
certainly not the only one used by investigators in evaluating detection and decision-
making performance. There is a parallel between SDT and another form of detection
procedure which is used even more frequently; analysis of variance. For the purpose
of exposition here, one refers only to a one-way analysis of variance (ANOVA) or
more properly Student’s t-test. Telling one thing from another is not a problem
unique to psychological investigation. A student (William Gossett) was at one
time employed by the Guinness Brewery to, amongst other duties, help ensure the
quality control of their beer. His problem was to ensure that one sample of beer did
not vary signi®cantly from its companions, a problem much appreciated by many
beer drinkers. In the course of his duties he proposed a statistical procedure to
compare the diŒerence between the means and the variability within each sample
to decide whether a criterion diŒerence between the two had been violated. Today,
many students learn the nature of Gossett’s procedure along their way to more
sophisticated methodologies. SDT is directly related to the classical statistical pro-
cedure of one-way ANOVA, since each is concerned with the degree of similarity and
diŒerence between a bi-modal distribution of signal and noise or, more generally,
two discrete samples. Simply put, both SDT and ANOVA are tied to at least one
binary answer. In the former case, the input to the analysis consists of two black-
and-white statements; signal present vs. absent, and response, yes vs. no. In the
latter, we analyse a set of data points, each of which are de®nitively assigned to
one and only one of two or more groups, then derive a yes±no answer regarding
whether the groups are or are not drawn from the same sample and/or population.
Whilst these two diŒerent techniques perform diŒerent transforms upon this data, in
principle their actions are highly analogous. For example, if a gun is let oŒ in a quiet
room on several occasions, a human observer of normal hearing should provide a
100% hit rate and correct rejection rate, together with a 0% miss and false alarm
rate. Whilst this person would be viewed as a `perfect’ observer, the self-same
response pattern could be had by taking an arti®cial recording, such as one chan-
nelled through a microphone, and subjecting the derived scores to a one way
ANOVA. In further analogy, when distinctions are diçcult and errors are made,
the categories of false alarm and miss are directly linked to statistical type I and type
II errors, respectively.

Given this, can one devise a way in which the fuzzy nature of detection and
selection in the ®rst place can generate a method to help improve discrimination
of events at a near threshold level? The authors believe that one can. In this respect, a
fuzzy analysis of variance (FANOVA) is proposed, in which the degree of member-
ship of a sample member is not a discrete situation but one which is characterized by
a greater or lesser truth value. SDT provides a single `snap-shot’ of the situation at
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hand, thus ANOVA and its various relations and derivatives are also largely bound
to comparing situations at a moment in time (see also Ishibushi and Tanaka 1992,
Ishibushi et al. 1993, Klir and Yuan 1995). However, just as the de®nition of a signal
can change, so the membership value of a sample can vary over time, either as the
sample itself changes or the criterion adopted for sample designation changes.
ANOVA typically derives a probability value in which an arbitrary level of chance
(i.e. 5% ) is adopted as the criterion to accept or reject the notion of diŒerence.
FANOVA can be much more dynamic than this in its outcome.{ Like a sequence
of repeated analyses, which would be time-consuming and tedious in themselves,
FANOVA could show how phenomena evolve over time.

The very word statistics comes from a semantic root meaning static or stationary.
Thus, by entomological origin, it implies a single moment in time. Yet, behaviour is
fundamentally characterized by variation and change, and, thus, time, in and of
itself, is a crucial component of any full understanding. As one grows more sophis-
ticated in various conceptual approaches to understanding, one must develop
methods and procedures which match that level of theorizing. For the last century,
statistics provided a crucial step forward along the methodological path. Now, in the
new century, one must speci®cally and intentionally include time in one’s eŒorts, and
it is suggested that FANOVA can provide a ®rst and small step along the path to
dynamic statistics or `dynistics.’

8. Summary and conclusions

One can arbitrarily reduce the world to black and white, but, in reality, it is not
constructed that way. Although there is a great advantage in categorizing and sort-
ing and, indeed, many aspects of cognition and development would not be possible
without this capacity, the ability to appreciate the blend of items, objects, concepts
and ideas also has great value. In this work, one has taken one of the pillars of
human behavioural research and, indeed, detection assessment in general and ela-
borated it from the collapsed (black and white) case to show that the addition of
some degree of uncertainty actually renders value. This technique can be applied to
many diŒerent realms. Indeed, it is crucial to all of science, since the symbiotic acts of
conception and observation constitute the central thrust of the scienti®c enterprise.

In an applied realm, the conception of fuzzy false alarms certainly has value.
Traditionally, false alarms are viewed in their sterile form as an `incorrect’ response
and in the practical realm as a nuisance to be suppressed when possible and muted
where necessary. However, when a fuzzy false alarm is considered as a `near miss’, as
occurs in aviation or ground transportation, one can see that this type of event
represents a very informative occurrence, as can be illustrated by a ®nal example
from the aviation domain. The Aviation Safety Reporting System (ASRS) is pre-
dicated upon this assumption. ASRS is a compendium of reports of potential safety
problems by pilots, controllers, and even airline passengers. These reports often stem
from an incident where no damage or other impacts occurred but something nearly
occurred. If considered in conventional SDT terms, these ASRS examples would be
false alarms. In reality, the reports are responses to a `close call’ and, thus, are more
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{ One is aware of the linkages with correlation and with regression techniques. However,
FANOVA can provide more information and additional advantages, although one has not
attempted to articulate all such advantages here.



rightly viewed as `near hits’. Many researchers have used this near-hit information as
representative of trends indicating when actual collisions may occur. This form of
practical application of a formal outcome of fuzzy signal detection indicates con-
ceptually the value of considering membership functions beyond the traditional zero
and one diŒerentiation.

In case it has not been said clearly enough, one will now repeat, the authors are
strong admirers of what has been called classic or traditional signal detection theory.
It is their position that SDT represents one of the strongest quantitative techniques
in existence for the analysis of human behaviour. Further, SDT can also be applied
to machine detection and, by extension, to systems which use both human and
machine in tandem in the detection process. Also, SDT has been used in many
other realms as a useful and reliable technique. Thus, this work is not a critique
of SDT, but rather stands in the hope of providing an extension to what is already a
powerful ally. Through the joining with fuzzy set theory, one hopes to broaden even
further the range of application and to use the advantages that fuzzy sets bring to
provide more insight into behavioural response. In particular, it is believed that this
marriage permits much further exploration and explanation of the temporal dimen-
sion of response in typical SDT situations and may, thus, further help in the endea-
vour to illuminate and understand diçcult problems of behaviour in general.
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