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ABSTRACT. It is proposed that reliance on only the mean and standard deviation
of a distribution to describe response frequency may lead to erroneous in-
ferences concerning such distributions when skewness and kurtosis are present.
After defining the first four moments of a distribution, it is demonstrated
analytically that skewness and kurtosis may vary to systematically influence the
mean and standard deviation of a set of related distributions. The significance of
these relationships for the interpretation of differing response distributions is ad-
vanced through examples gleaned from the movement control literature. In addi-
tion, it is suggested that the use of bandwidths to select scores from a distribution
for subsequent data analysis can further compound the problems of both
descriptive and explanatory inference, particularly when skewness and kurtosis
are features of such distribution(s). Whether or not inferential statistics are in-
voked, a veridical perspective of distributions is essential to meaningful data
analysis.

A STANDARD EMPIRICAL strategy for researchers in motor behavior
i to examine features of a dependent variable or variables through
some statistical analyses of the distribution of the scores collected. The
assessment is usually based on the mean of the distribution, although
the standard deviation, is also calculated on many occasions to enrich
the description of the sample distribution. In this paper it is proposed
that reliance on only the first and second moments of a sample distribu-
tion can lead to erroneous perspectives of the distribution and as a con-
sequence may color inferences drawn with respect to, for example, the
effect of an independent variable on a dependent variable or the rela-
tionship between dependent variables. Failure to consider fully all
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elements of the sample distribution is a problem common to users of

fatistics 1n a var’le{y o{ |(|e|ds 0{ SJ[U(JV and thete have beeh d HUFﬁbeF 0[
recent commentaries on this situation (e.g., Tukey, 1977; Wainer &
Thissen, 1981).

The mean and standard deviation are generally the only two descrip-
tive statistics of response distributions to be reported in motor behavior
research. These statistics are usually calculated from a distribution based
on actual scores or a distribution of deviations from some criterion
value. For example, constant error and variable error have been pre-
sumed to reflect different processes in the short term retention of simple
movements (Laabs, 1973) and a measure of variability is fundamental to
formulations of the movement speed-accuracy trade-off (e.g., Wood-
worth, 1899) and schema theory (e.g., Schmidt, 1975). To develop the
case for the significance of the statistics based on third and fourth
moments of the response distribution, and their scale independent
derivatives namely, skewness and kurtosis respectively, an initial condi-
tion is the reiteration of the definitions of moments of a distribution. A
full account of these descriptive statistics may be found in most basic
statistical texts (e.g., Glass & Stanley, 1970; Hays, 1963) and as a conse-
quence, only sufficient mathematical detail is provided to understand
the fundamental components of the first four moments of a distribution
together with some of their derivatives.

Moments of a Distribution of Scores

There are a variety of statistics which can be derived from a sample of
scores to describe a distribution of the scores. These descriptive
statistics may be separated into various measurement categories. The
categories of central tendency and variability are those most frequently
utilized by researchers.

_The most commonly used measure of central tendency is the mean
(X') which is calculated by summing all the scores (X;) from the sample
and dividing by the number of scores summed (n).

X =L Xh (1)

The mean has a number of interesting properties. For example, when
the distribution of the scores is symmetrical around the mean (e.g., Fig-
ure 1a) then the mean is equal to both the mode and the median. How-
ever, the relationships between these three measures of central ten-
dency change when the distribution of scores is assymetrical with respect
to the mean (Figure 1h). Despite the fact that skewness leads to an intri-
cate relationship between these three measures of central tendency, it is
the case that the vast majority of the studies in the motor behavior liter-
ature, report only the mean. There are alternative descriptive statistics
which reflect the central tendency of a distribution, including the geo-
metric and harmonic means, but these measures are rarely utilized.
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Fig. 1—(a) Response frequencies exhibiting systematic changes in kurtosis with
skewness kept constant at zero. (b) A sample positively skewed distribution.
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In the same way that the mean has been and is the predominate

estimate of central tendency, the standard deviation of the distribution
is the principal measure of variability. The variance of the sample
distribution is the sum of squared deviations of each score from the
mean divided by the number of scores. The square root of the variance
is the standard deviation (S.) which is thus denoted as:

S,=(@ (X, - X" (2)

The standard deviation has several properties of interest, these include
the attribute that when the sample distribution is normal, as in Figure
1a, the percentage of scores which fall within any specified value of a
standard deviation may be calculated. Other measures of variability in-
clude the various range scores.

The mean and standard deviation represent the statistics most com-
monly used to describe a distribution of scores regardless of whether in-
ferential statistics are subsequently invoked. This approach is sufficient
in cases where both the sample and population distributions are
established as normal. However, it is often the case that there is some
degree of asymmetry (skewness) and peakedness (kurtosis) in the
population distribution curve (Glass & Stanley, 1970) and indeed under
many frequency circumstances a sample may not form a normal
distribution even if the parent population may do so (e.g., Fisher, 1915;
Student, 1908). The measures of skewness and kurtosis are rarely
reported in statistical accounts of response distributions presumably
because of the implicit assumption of normality in both the population
and sample distribution which makes expression of the derivatives from
the third and fourth moments apparently redundant. A less generous
but more realistic statement is that skewness and kurtosis are simply
forgotten reflections of the third and fourth moments respectively, of
the response distribution.

Skewness is the indicant of asymmetry about the mode and is for-
mulated from the third moment (M,) of the distribution as in essence, it
reflects the average of the deviation scores raised to the third power
divided by the standard deviation raised to the third power:

n

My;=L (X -X)n (3)
=1
Leading to: B
Skewness = L (X, — X )*/n/S? (4)

1=1

Hence, if the scores are symmetrically distributed around the mean the
skewness is zero. When the distribution of scores extends from the
mean further toward the larger than smaller values of the distribution
(Figure 1b), then the distribution is said to be positively skewed. The
complement of this is negative skewness which occurs when the scores
extend from the mean further towards the smaller than larger values of
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the distribution. Contrasts of skewness may be made across different
distributions because the division of the third moment by &.° in Equation
(3) makes the estimate of skewness independent of the distribution
scale. Skewness also leads to the mean having a different value from the
mode.

The fourth moment (M,) of the distribution is the basis for the kurtosis
statistic which takes the ratio of the deviation scores raised to the fourth
power to the standard deviation also raised to the fourth power.

M-I (- X 5
Leading to: -
Kurtosis = Z (X = X )*/n/S,* 6)

i=1

Kurtosis reflects the peakedness of the distribution, with a normal curve
having a kurtosis value of 3. High peakedness or leptokurticness leads to
a number greater than 3 whereas flatness or platykurticness leads to a
kurtosis estimate between zero and three (see Figure 2a for examples of
distributions with kurtosis). Some researchers and packaged statistical
programs subtract the value 3 from the kurtosis estimate in order that
zero represents the value of kurtosis when the distribution is normal.

Thus the statistics based on the third and fourth moments, namely
skewness and kurtosis respectively, help define the shape of the
distribution of scores. The preceding albeit brief, account should be suf-
ficient to understand the basis of the third and fourth moments together
with their mathematical derivation with respect to the mean and stan-
dard deviation of a distribution. In principle n moments of a distribution
may be calculated but in practice moments beyond the fourth power
tend to be unstable and yield little additional reliable information (Hoel,
1971).

The Relationship Between Moments of a Distribution

Although the definitions of the moments of a distribution may be
found in most statistical texts, concomitant discussion of the relation-
ship between the moments is a rarity. The major reason for this perhaps,
is that the moments of distribution are not usually manipulated in some
independent fashion, rather they emerge from the sample of scores col-
lected.

lt may not always be reasonable to assume that the population
distributions of movement parameters are normal. That is, varying
degrees of skewness and kurtosis can be inherent features of the popula-
tion distribution. Under this situation, biases in the third and fourth
moments of the sample distribution(s) may be expected to exist ir-
respective of hiases due to sampling error. Of course, sampling error
could lead to an estimate of a normal distribution when in fact the
population distribution deviates from normality.
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It should be noted that “The sampling variance of @ moment depends
on the population moment of twice the order, that is, becomes very large
for higher moments, even when n is large” (Kendall & Stuart, 1977, p.
249). 1t is for this reason that some statisticians have questioned the
practical utility of moments beyond the second power because the size
of the standard error of each cumulative moment grows exponentially
with the order of that moment. As a consequence, the stability of
estimates of skewness and kurtosis are progressively more dependent
upon the size of the sample under examination. However, researchers
should be aware that this instability is inherent to a lesser degree in
lower order moments whose validity depends upon a number of obser-
vations greater than that typically utilized in current motor behavior
research.

Even if the population distribution is normal the sample of scores
drawn from this distribution may reflect deviations from normality, par-
ticularly when the number of scores sampled is small (Editorial, 1915;
Fisher, 1915; Student, 1907). An editorial in the 1915 edition of
Biometrika provides a table of sample distribution moments as a func-
tion of sample size. It shows that for the samples utilized, estimates of
skewness and kurtosis have for all practical purposes reached values in-
dicative of normal distributions when the sample size was n < 50. Fur-
thermore, with this sample size the estimates of the probable error of
the standard deviation were consistent with statistical theory. However,
when the sample size was less than 20, the value of the standard devia-
tion was usually less than that of the population and skewness and kur-
tosis were apparent. This example again demonstrates the potential im-
pact of sample size upon estimates of the distribution moments and also
raises the issue of the degree to which any of the first four moments can
be meaningfully contrasted across sample distributions without
reference to the other three moments.

When more than one distribution is being analyzed, systematic varia-
tions of one or more of the moments across the distributions may be
made and the impact of this manipulation on the other moments
calculated. Of particular interest in this paper is the fact that systematic
variations in the third and/or fourth moments across a set of distribu-
tions may influence the functions for the first and second moments of
the same set of response distributions. No general rules for these effects
may be formulated as they are data driven and specific to the distribu-
tions examined. However, an analytical consideration of particular
hypothetical examples of the independent manipulation of skewness
and kurtosis may aid in understanding of the potential significance of
these forgotten moments in the analyses of data sets.

To illustrate a relationship between the above parameters we may ex-
amine properties of the Chi-squared distribution in which coefficients of
skewness and kurtosis are detailed (Lancaster, 1969, p. 20). For the Chi-
squared distribution of the first four moments are:
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M1 =N
Mz = zn
M3 = 8”

M, = 48n + 12n?
Where n is the mean. Since skewness (y,) is defined as

vi = sl (from 4)

Then as
M, = 2n, M; = 8n
8n
Y= oy (7)
Yo = 4/S (8)

A similar procedure may be adopted for Kurtosis (y,) through reduc-
tion from the expression

Y2 = /LA//LQ_E = 3 = ]2/’771 (9)
that is,
v, = 12/n = 12.2'%/(2n)"* = 12.2'%/S (10)

Analytical examples of the relationship between distribution moments
may be directly calculated from known properties of beta distributions.
In beta distributions a continuous random variable X takes values in the
interval (0, 1). Thus beta distributions differ from Gaussian curves in that
they do not stretch to infinity. Nevertheless, beta functions are well
defined and can be utilized to illustrate the relationship between
moments of a distribution.

Consider the example drawn from Bury (1975, p. 336) and shown in
Figure 2a and b. Beta functions have two shape parameters y, and v, so
that the beta model can assume a variety of shapes. In Figure 2a the
equal variations in shape parameters produce symmetrical functions
that vary in kurtosis. The standard deviations and kurtosis estimates may
be calculated from known functions for beta distributions and these are
presented in Table 1. The results show that for the distributions in Figure
2a, the standard deviation decreases at a decreasing rate as the distribu-
tions vary from (y = 1) to (y = 6) which approaches the normal curve.
This relationship is consistent with the analytical analysis presented
previously which showed that the relationship between the standard
deviation and kurtosis was an exponential function.

Table 1 also shows the shifts in standard deviation, skewness and kur-
tosis for the beta functions shown in Figure 2b. It should be noted that
substantial percentage shifts in the standard deviation can arise from
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Fig. 2a and b—Sample beta distribution functions where y; and v, are varied as given.
Abscissa represents beta distribution zero to one and ordinate represents frequency.
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Table 1

The relationship between standard deviation, skewness and kurtosis for the beta
function shown in Figure 2a and b.

Standard
1 2 Deviation Skewness Kurtosis
1 1 .288 0 1.800
2 2 224 0 2,143
3 3 .188 0 2.333
4 4 .166 0 2.455
6 6 138 0 2.600
2 1.5 232 - .233 2.140
3 1.5 201 - 510 2.538
5 3 161 - .309 2.585
5 2 160 - 713 2.888

changes in skewness and kurtosis. Indeed, the shifts in standard devia-
tion from this example are of a far greater order of magnitude than often
reported in the motor behavior domain. Systematic changes in the third
moment of a set of distributions can influence both the first and second
moments of a distribution set whereas variations in the fourth moment
when skewness is zero will influence only the second moment. It should
be evident that changes in both third and fourth moments may combine
to influence the other moments of the sample distributions.

Thus, if the third and fourth moments of the distribution could be
manipulated independently while frequency was held constant, various
systematic functions would emerge for the first and second moments.
Obviously, the strength of the impact upon the mean and standard
deviation is determined by the degree and type of skewness and kur-
tosis involved. The significance of these potentially independent effects
of skewness and kurtosis on the first and second moments is that it
demonstrates that theoretically relevant assessments of the mean and
standard deviation of a distribution may only be made in light of
knowledge of the bias in the third and fourth moments. For example,
the same standard deviation function for a set of distributions obtained
from the manipulation of an independent variable will hold different
theoretical implications according to whether the distributions are nor-
mal or biased in either the third and/or fourth moments. This point is
now expounded more fully in the context of the movement speed-
accuracy relationship to more directly illustrate the significance of the
third and fourth moments of a distribution to motor behavior research.

Example: The speed-accuracy relationship in movement control

Since the initial work of Fullerton and Cattell (1892) there have been
numerous efforts to delineate the relationship between movement
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speed and movement accuracy. The early work of Fullerton and Cattell

(1892) and Woodworth (1899) reported both constant error (CE) and
variable error (VE), the first and second moments respectively, to ex-
amine the speed-accuracy function. Most subsequent investigations
have either not provided constant error (e.g., Schmidt, Zelaznik,
Hawkins, Frank, & Quinn, 1979) or it has been combined with variable
error to form a root mean square statistic (e.g., Howarth, Beggs, &
Bowden, 1971) in which neither CE nor VE may be independently
observed.

Parenthetically, a great many investigations have employed a target
bandwidth first utilized by Woodworth (1899) and more fully exploited
by Fitts (1954). One artifact of this usage is that neither CE nor VE are im-
mediately apparent from initial measurement of response distributions.
While it has been suggested that VE may be subsequently calculated
from a percentage of target misses, CE shifts within the boundary con-
straints of the target bandwidth are not observable in the hit/miss
dichotomy of response accuracy (Crossman, 1956; Welford, 1968).
Moreover, the calculation of VE through the establishment of the total
range of responses, relies on the assumption that responses are
distributed normally about some mean contained within the target
bandwidths.

We have demonstrated elsewhere that the assumption of normality in
response distributions within a target may be based upon unfounded
belief and that such distributions may be affected by biases in both third
and fourth distribution moments and problems in the insufficiency of
trial frequency for particular movement conditions (Hancock & Newell,
in press). In a similar manner, the early work from our laboratory on the
movement-speed timing-error function was based on assessment of
only the first two moments (e.g., Newell, Hoshizaki, Carlton, & Halbert,
1979; Newell, Carlton, Carlton, & Halbert, 1980). To date, all attempts
at decreasing the speed-accuracy function through analysis of response
distributions have failed to consider the third and fourth moments,
while some have based their formulations entirely on one moment, the
standard deviation (Schmidt, etal., 1979). This developmenthasoccurred
despite the fact that Fullerton and Cattell (1982) clearly demonstrated
systematic within-subject shifts in skewness and kurtosis for response
distributions of peak force-peak force variability (see Figure 3).

In the development of a space-ttime formulation of the speed-
accuracy relationship (Hancock & Newell, in press) we have attempted
to examine and accommodate the shifts in bias of the third and fourth
moments into the interpretation of the mean and standard deviation of
movement error as a function of movement velocity. As an example, let
us consider the spatial error distributions that arise from movement time
manipulations of the same amplitude (see Figure 4). The distributions
range at the very low velocity condition from a high degree of peaked-
ness (leptokurticness) with a modicum of positive skewness through a
normal curve at approximately 50% of maximum average velocity to a
high degree of negative skewness and a modicum of flatness (platykurt-
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Fig. 3—Sample response distributions for five subjects demonstrating systematic varia-
tions in skewness and kurtosis as a function of criterion peak force (reproduced after
Fullerton & Cattell, 1892, Figures 23-42.)
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Fig. 4—Frequency distributions for equal observations throughout the Average Move-
ment Velocity Continuum with Movement Amplitude constant.

icness) at the very high velocity conditions. The degree to which the dis-
tribution departs from normality is directly related to the degree to
which the imposed velocity constraints deviate from 50% of maximum
for the given amplitude.

At this time it is unclear to what degree the curvilinearity of the
variability function in the speed-accuracy phenomenon is due to shifts
in the third and fourth moments (Hancock & Newell, in press). How-
ever, the significance of these departures from normality reside in their
relevance to the interpretation placed on both the first and second mo-
ments. The interpretation of the variability function would be different
according to whether the actual distributions deviate systematically
from normality (as in Figure 4) or whether the distributions are normal
thoughout the velocity range. This is because one cannot determine the
exact contribution of shifts in the third and fourth moments to the stan-
dard deviation. Hence all four moments are required to veridically de-
scribe the distribution and, relative to the example under consideration
here, the impact of the velocity manipulation on movement error within
a given amplitude.

The arguments elaborated from the speed-accuracy function in-
evitably apply to other theoretical domains in motor behavior. For ex-
ample, the constant and variable error shifts that one can observe in the
short term memory literature (cf., Stelmach, 1974) could be usefully
reinterpreted in relation to deviations in the normalities of the distribu-
tion. The general point is that where extremes of performance are in-
vestigated biases in the third and fourth moments are most likely to oc-
cur, irrespective of the interval scale employed to measure perform-
ance. It is not that biases occur due to poor sampling of scores from the
population (although this is possible), but rather that biases in skewness
and kurtosis are likely to reflect the population distribution for many
performance measures in motor behavior research. Furthermore, the
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problems which stem from forgetting the third and fourth moments are
compounded when a criterion bandwidth is employed to select trials
from the total distribution for subsequent data analysis. It is to this issue
that we now turn.

Using a Criterion Bandwidth to Select Trials for Subsequent Analysis

There is a trend for researchers to utilize a bandwidth around a task
criterion as a means of establishing a group of trials at a set performance
level with reduced variability (e.g., Carlton & Newell, 1979; Schmidt &
Sherwood, 1982). This tactic is intuitively appealing as it seems initially
to ensure that performance on one independent variable is constant
around a set criterion, thus enabling comparisons between non-
overlapping levels of that variable on some dependent variable. In this
section we show that the validity of this technique rests in part on the
representativeness of the distribution of scores obtained from all trials
performed.

There are several ways in which variations in the overall distribution
of the independent variable might lead to problems in interpretation.
Consider the distributions plotted in Figure 5. In this example, each
separate group (A, B, and C) has its mean within the bandwidth and over
all the trials produced, has the same standard deviation with equal kur-
tosis and skewness of zero. Note that there is a shift in the mean perfor-
mance of the overall distribution of each group of scores. This small shift
in mean performance also has an impact on the distribution of the
scores within the bandwidth. In Figure 5 the variability of scores from
distributions A and C within the bandwidth will be smaller than the
variability of the scores from distribution B within the bandwidth, due to
the biases in skewness and kurtosis that now exist. Hence, although the
standard deviation of the three groups is identical for all the trials pro-
duced, the mean shift in performance will produce differences in
estimates of variability of the scores within the bandwidth. This problem
is compounded if the mean of the overall distribution falls outside the
criterion bandwidth selected, which it could well do given the extreme
range effects that often occur in motor behavior research (e.g., Fullerton
& Cattell, 1892; Woodworth, 1899).

The problem raised above may become even more complex when
the overall distribution of the criterion variable deviates from normality.
The distribution could be skewed regardless of whether there is a mean
performance difference between groups. It has been shown that
skewness is most likely to occur when subjects are performing at the ex-
treme levels of an independent variable because the majority of scores
will tend to fall toward the middle range of that variable. Differences in
skewness of the overall distribution of trials will have a subsequent im-
pact upon both the mean and standard deviation of the trials that fall
within the bandwidth. Thus the usefulness of selecting trials through a
bandwidth criterion depends upon an understanding of the relationship
between the trials in the bandwidth and the total distribution.
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Fig. 5—Sample distributions (A, B & C) in relation to target criterion and +10% band-
width.

The degree to which the bandwidth trials are representative of the
overall distribution is also questioned by the practice of varying the
number of trials in the overall distribution. This occurs when ex-
perimenters keep the subject performing at the task until an a priori
number of trials fall within the bandwidth criterion. The number of trials
required to reach criterion could well vary according to condition and
where in the overall distribution of data the criterion bandwidth is
located. It is also worth repeating that, irrespective of the above con-
cern, reliable estimates of the moments of a distribution can also be
negated by the collection of a small number of data points for the sam-
ple set.

Obviously, the problems raised above can be minimized or magnified
by the size of the bandwidth utilized to select trials for subsequent anal-
ysis. A bandwidth of +10% of the criterion is a standard range selected
although sometimes the bandwidth is wider. The fact that statistically
significant mean performance difference can occur between trials
selected on a 10% bandwidth basis suggests that the concerns raised in
this section are not merely a hypothetical problem. Indeed, utilizing a
bandwidth to select scores for subsequent analysis only highlights the
problems which can stem from forgetting the impact of deviations in the
third and fourth moments of a distribution.
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Concluding Comments

In this communication we have illustrated a few of the problems that
can emerge in statistical analysis when the third and fourth moments re-
main forgotten characteristics of a distribution of scores. The traditional
approach of relying solely on the mean and/or the standard deviation as
descriptive statistics is only appropriate if the distribution is normal and
even this can be misleading when a criterion bandwidth is employed to
select trials for analysis. Whether inferential statistics are invoked or not,
a veridical perspective of the distributions at hand is essential to mean-
ingful data analysis.

Understanding the bias in the third and fourth moments of the
distribution will contribute significantly to this perspective. Graphical
procedures have been developed to accommodate comprehensive
management and presentation of distributions (Tukey, 1977; Wainer &
Thissen, 1981) and some of these procedures are now available in com-
puterized statistical packages. Thus there are no practical grounds to
constrain the theoretical advantage of analyzing the third and fourth
moments and their derivatives.
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