1_&1:@‘1‘

agea 7

ErGonNoMics, 2001, voL. 44, No. 12, 1056—1068

. ':AlQo

* S1D!

Individual differences in tracking

S. MiyAakEet, P. LosLEVER} and P. A. HANCOCK§™®

tDepartment of Environmental Management 11, School of Health sciences,
University of Occupational and Environmental Health, Japan 1-1 Iscigaoka,
Yahatanishiku Kitakgushu 807-8555, Japan

iLaboratory of automatic control and mechanics of industrial and human
component systems, University of Valenciennes, Le Mont Houy, BP311 59304
Valenciennes CEDEX, France

§Department of Psychology & The Institute for Simulation and Training,
University of Central Florida, Orlando, FL 32816, USA

Keywords: Correspondence factor analysis; Principal components analysis;
Tracking; Individual differences

The present experiment compared differences in response strategy of participants
performing a two-dimensional tracking task at three different levels of task
difficulty. Twelve participants tracked an iconic aeroplane target as accurately as
possible for nine repeated trials each of 5 min duration. The random input and
individual response output were calculated in terms of direction and velocity.
Specifically, for each 200-ms sample period, a calculated combination of eight
trajectories and three velocities provided a 24 combinatorial description of both
random input and participant response. Distributions across these combinations
represent descriptive results and reflect individual characteristics. The distribu-
tions were compared using the technique of correspondence factor analysis. The
outcome of this multidimensional method was that first, between-participants
discrimination was best served by the up-vertical and low-velocity combination
and, second, that the former pattern typified poor performers, while more skilled
individuals used all directional options at the highest velocity level. Implications
for individualized controls are examined.

1. Introduction
In many fields of human-machine interaction, such as the medical sciences, tele-
operation and vehicle control, skilled manual control remains a major component of
performance. Indeed, the earliest focus of human-machine investigation dealt primarily
with the problems of manualcontrol of complex systems (Birmingham and Taylor 1954,
Craik 1947a,b). While interest in the motor component of human-interaction has
fluctuated, innovations in technology such as virtual reality have again begun to
highlight how important an understanding of manual control is to human performance
in general and to ergonomicsin particular. With respect to tracking capability, there are
numerous authoritative texts that have considered multiple facets of the overall
problem (Poulton 1974). While general models of the human controller have provided
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considerable insight into performance (McRuer and Jex 1967, Levison et al. 1969,
Abdel-Malek and Marmarelis 1990) one question that has yet to be fully resolved is that
of individual differences in performance capability. Indeed, it is a supportable assertion
that many of the common methods of analysis in this realm seek principally to
distinguish normalized trends across individuals, so that idiosyncratic or individual
variations are given diminished attention or frequently they are not considered at all.

When examining tracking performance there are many ways in which to
distinguish the relationship between input and output (Viviani and Campadelli,
1987). Of critical concern are the causal relations between task variables and the
resultant response characteristics. In a human-machine system, inputs and outputs
have to be considered, according to the nature of their scales (qualitative or
quantitative), and their origins (deterministic or stochastic, Sandquist 1985). The
combination of these two points of view yield several modelling techniques. These
techniques depend upon how the experimental data are integrated. The data may be
summarized over space, over time, across individuals, or controlled factors, or
through separated or combinatorial methods. For example, in the time or frequency
domain, transfer functions or stochastic models have been proposed (Phatak and
Bekey 1969, Smith 1967). If the data are integrated over both time and space, global
indices such as normalized or non-normalized root mean square error, time delay,
and gain can be computed (Ikeura and Inuoka 1990, and see Mates and Radil 1992).
For a given experimental design, the approach that is most often used to assess the
influence of the input factors on these indices is analysis of variance (Mead 1988).

Thus, in the data procedures used in the previous experimentation two problems
emerge. First, as analytic methods have mainly dealt with time, frequency, or more
global approaches, the multidimensional aspect of response has rarely been taken into
consideration. When it is considered, the different dimensions are generally analysed
through separated ways and through indices computed for each dimension
(Massimino et al. 1989). Second, these procedures mainly focus on the ‘global quality’
of task performance through summed indices such as root mean square of the error
signal, time spent on target, or time lag and not on the actual behaviours emitted during
task performance. Individual differences can arise from intrinsic variation in physical
characteristics such as skill level, musculature, or the susceptibility to fatigue, or from
cognitive differences in, for example, response selection strategy, or indeed from
combinations of these factors. Therefore, the primary aim of the present paper is to
promulgate a descriptive and multidimensional approach to examine individual
responses in a two-dimensional tracking control task.

2. Experimental method

2.1. Experimental participants

Twelve, right-handed male individuals volunteered to participate in the present
experiment. They formed a convenience sample drawn from the faculty, staff and
students of the University of Minnesota. Their mean age was 31.1 years, with a range
from 22 to 38 years. Each was in professed good health at the time of testing. None
had any visual or motor impairment that would restrict capability in respect of the
required tracking task.

2.2. Experimental design
The present experiment employed a within-subject design in which each participant
took part in all three experimental conditions. Each of the three conditions were
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administered as separate sessions and each consisted of three sequential 5-min trials.
For each session, the first and last trials were fixed at a medium level of difficulty. By
varying the difficulty of the middle trial between high (H), medium (M), and low (L)
levels, the three experimental conditions were created: MLM (low difficulty
condition), MMM (medium difficulty condition), and MHM (high difficulty
condition). All participants first completed a training phase consisting of one
session at the medium difficulty level (MMM). For the subsequent testing phase,
each participant completed three additional sessions, one for each level of difficulty.
Thus, including the training trials, each participant completed four sessions of three
5-min trials, amounting to a total of 60 min of tracking performance under the
various conditions. The order of administration of the sessions in the testing phase
was randomized across participants. There were at least two days between each
session to avoid acute effects associated with any localized muscle fatigue (see
Hancock et al., 1989).

2.3. Experimental procedure

The participant was seated in front of a computer display in a darkened room and was
asked to track an aeroplane icon target that moved randomly across the screen. The
forcing functions of the X and Y direction were generated by summing a large number
(40, 45, 50, respectively, for each condition of increasing difficulty) of sinusoids of
different frequencies, uniformly separated in log scale and arbitrary phases. The
spectra of the forcing functions were rectangular with cut-off frequencies of 0.2, 0.4 and
0.6 Hz forthe L, M and H levels of difficulty respectively (i.e. the forcing functions were
equivalent to band limited white noise). The relative amplitude ratio of these forcing
functions was 1.0:1.5:2.0. Therefore, the target moved more quickly and with larger
excursions in the H level task and moved slower and less widely in the L level condition.
The object of the task was to keep this target inside a central circular gun sight area
using a joystick (FlightStick, CH Products, Vista, CA). Therefore, the task was a two-
dimensional compensatory tracking task with first-order control. The control gains of
the joystick in the X and Y directions were identical. The duration of each individual
trial was 300 s. Preceding and following each trial, the participant was asked to provide
a response on a critical flicker fusion test and to evaluate subjective workload using the
computerized version of the NASA-TLX task (Hart and Staveland 1988). Results from
these latter measures are described elsewhere (Hancock et al. 1995).

3. Data analytic procedures

The data analysis procedures required sampling of target and control motions at
5 Hz, which resulted in a 1500 samples for each 5-min tracking trial. There were 108
experimental trials (12 Participants x 3 Sessions x 3 Trials) yielding a total of 162 000
data samples. The primary goals for the analysis of these data were to characterize
and compare the tracking behaviour of individuals. To achieve these goals, tracking
behaviour was considered in terms of discrete intervals based on successive 200-ms
trajectories of tracking. As illustrated in figure 1 (a), this tracking data was
decomposed into two modalities, direction and velocity, both of which were
consequences of movement given to the joystick. Combined data from these two
modalities were then used to classify the tracking behaviours of each participant into
24 categories. Thus, this procedure yielded a data set containing information about
the frequencies of specific behavioural outputs in response to input from the tracking
task.
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Figure 1. Control motion encoding to obtain the direction-velocity distributions expressed as
histograms.

In the present experiment, the principle of the Freeman chain code was used to
describe the trajectory direction (Pavlidis 1980). This technique consists of defining
eight basic directions, as shown in figure 1 (b), and to associate the speed vector
orientation to one of them. To describe the magnitude of the speed, three categories were
considered, namely ‘slow’, ‘medium’and ‘fast’, figure 1 (b). The ‘slow’ speed ranges were
smaller than 135/40 arbitrary units (17 pixels/s) and the ‘fast’ speed was greater than
135/16 arbitrary units (42 pixels/s). These values are nearly equivalent to the maximum
speed of the low-level input signal and the maximum speed of the fast-level input signal,
respectively. The range of the ‘medium speed’ was between 135/16 and 135/40 arbitrary
units (17 —42 pixels/s). Then, the eight directions and three speed levels are combined in
24 categories. Each point of the ongoing response is approximated by one of these 24
combinations. In this way a qualitative variable V" with 24 categories was created (and
see Fingleton, 1984; Linhart and Zuchini, 1986). As shown in figure 1 (¢), frequency
distributions of ¥ can be illustrated via direction-velocity histograms that were created
by applying this coding technique for a sample and integrating over the point set
corresponding to 5-min trial period. This procedure was also applied to the trajectories
of the target. Thus, to assess the accuracy of tracking performance and to compare the
tracking responses of each individual, the behaviour of the target and each participant
was characterized by the distribution computed over all respective periods of tracking.
The next stage of analysis was to study the influence of the input difficulty level on the
observed direction-velocity behaviour patterns. The statistical method used to analyse
the outcome histograms is the correspondence factor analysis (Benzecri 1992) and the
principles of this method are summarized in the following section.

3.1. Correspondence Factor Analysis principle
Correspondence Factor Analysis (CFA) was introduced to analyse contingency
tables defined on two I'and Jfinite data sets with, respectively, m and n elements. The
generic term of the table is rated r;, i.e. the number of occurrences the category i of I
and the category j of Jare simultaneously present in the data set. This is represented
in figure 2.

In the present work, j is a category of the variable V, while i is an experimental
trial, i.e. a given individual’s response for a single trial of a session. In our case, these
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Figure 2. Schematic representation of correspondence factor analysis (CFA).

correspond to the frequencies for the direction-velocity in the category j (j=1, ...,
n = 24) for an observation i (i = I, ... ,m), where an ‘observation’ is one of the 108
total trials, being a combination of a trial subset, session subset and individual
subset. The following values are considered:

n m
_ _ i i
=Y r 1= i 1=/ =y,
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Two clouds of points can be associated to the frequency table: * N(I) is composed of
m points X; situated in R" space. Each point is characterized by a weight r; and a co-
ordinate set {ri} j =1 ... n. The distance measured in R" is the chi-squared:

n
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The inertia of N(I) is In(I) and explains the variation within N(I):
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*N(J) is composed of n points Y; situated in R"” space. Each point is characterized by
a weight r; and a co-ordinate set {r/} i =1 ... m. The distance used in R" is again

computed using the chi-squared metric:

m
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The centre of gravity of N(J) is GI:
n
Gl =) Y,
J=1

and the variation within N(J) is explained by its inertia, In(J) = In(l).

Given that the present study seeks to identify patterns of individual differences,
CFA is more appropriate than traditional confirmatory methods of analysis (e.g.
ANOVA, multiple regression) since, among other reasons, it is free of the
constraints imposed by an a priori hypothesis. CFA is an inductive method
generally used as an explanatory tool to uncover fundamental empirical
regularities within a large categorical data set, such as that employed in the
present study. Specifically, CFA brings to the fore the informative elements inside
the rows and columns and points out relationships among this more meaningful
data. To accomplish this, CFA seeks to compute orthogonal axes that minimize
the inertia between the factors and their initial values. The CFA method is fully
discussed in Benzecri (1992) and is nearly analogous to principle components
analysis (PCA). A critical distinction between these two statistical methods is that
PCA is most suitable for analysing continuous variables whereas CFA is designed
for analysing categorical contingency tables. Like other factor analytic methods,
the output of CFA can be considered as a qualitative and multidimensional
pattern of the data. Moreover, it is possible to consider extra observations that do
not participate to the building of factor axes, but are directly projected on them
(Benzecri 1992). An eminently useful result of CFA is the correspondence map
that provides a visual representation of the relationships between the row and
column categories as well as an indication of an individual’s temporal progression
across trials.

4. Experimental results
Since the main objective of the present work is to compare the individual behaviours,
analysed observations were the distribution of the 12 subjects. The distributions
corresponding to the 108 periods of 5 min (12 Participants x 3 Sessions x 3 Trials)
and to the input (low, medium, high, and overall input) are considered as illustrative
rows. Thus the active table has J =24 columns and = 12 rows, while the
illustrative table has J = 24 columns and K = 18 rows.

4.1. Inter-individual differences

In lieu of the 12 x 24 active table that is too large to be directly illustrated here, figure
3 presents the results in the more comprehensible form of a correspondence map. the
map indicates a factor plane with two axes accounting for 80% and 10%,
respectively, of the total inertia. The relative position of the 12 tracking profiles
corresponding to each participant’s average performance are indicated with black
circles. Average profiles of the target’s behaviour under low, medium, and high
conditions are labelled Input L, Input M, and Input H, respectively, and the point
corresponding to the mean overall input profile is labelled Input X. The first factor
was principally influenced by slow velocity upward direction-speed combination,
gives as 3 s in figure 1 (c) and was, by and large, determined by the performance of a
single participant, BR. The relative position of BR along axis 1 indicates that this
particular participant made excessive use of slow, vertical tracking behaviour. The
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Figure 3. Factor plane of the 12 participants and representative direction-velocity
combinations plotted together with the input level of tracking difficulty. Each individual
participant’s performance is represented as a black circle on the illustration.

finding that participants on the opposite side of the first axis had low relative values
for 3 s further indicated that vertical tracking behaviour was a salient discriminator
among these data. Similarly, points corresponding to combination 3 s and
participant BR also had dominant influences in defining the second axis. Further
inspection revealed that, along with BR, another participant made excessive use of
combination 3 s. When controlling for the substantial anomalous influence from
these two participants, the most discriminatory combination was 7 s, indicating that
slow vertical behaviour was still the best between-participant discriminator.

Figure 4 presents the individual trial profiles for the most and least accurate
participants, respectively, MC (points denoted in diamonds) and BR (points denoted
in crosses). The nomenclature used for these points describe the three-trial sequence
of a particular experimental session, where the specific trial being processed is in
capital typeface. For example, the two profiles labelled Mhm refer to the
performance of the first trial that was at a medium level of difficulty, where the
difficulties of the second trial and third trials were high and medium, respectively.
When considering the positions of the four input distributions (Input L, Input M,
Input H, and the summed Input X), it is evident that the tracking response of BR
does not vary with the different levels of input difficulty. Additionally, the large
absolute distance of BR from the input distributions is indicative of poor tracking
performance, while the close proximity of MC represents highly accurate tracking
performance. The trajectories of the dashed lines connecting the various profiles of
participant MC indicate that this participant was consistently able to closely match
the input distribution across trials and levels of difficulty. Participant HM performed
at the average level for the whole sample group, and thus, is situated at the
intersection of the two axes. To underscore the individual differences brought to the
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Figure 4. Factor plane showing the performance of three specific individuals, namely BR,
HM, and MC. These points represent the data for the individual recording the best
performance (MC), the worse performance (BR), and the performance of the individual
closest to the group mean (HM). The profiles for each trial for each session for BR and
MC are also illustrated. BR produced poor performance in failing to respond to different
levels of input demand, MC showed superior performance and the adaptation of MC to
different levels of demand is illustrated by the arrows connecting MC’s response.

fore by the analysis, figure 5 presents direction-velocity histograms corresponding to
the overall input distribution (Input) and these for the best (MC), the worst (BR),
and the representative closest to the mean (HM) of the tracking performances. It is
clear from the patterns illustrated by these histograms that BR and MC represent
two extreme cases in our experimental sample and, moreover, that the primary
distinction among these three distributions is the reliance on vertical-velocity
combinations.

4.2. Influence of input distributions

The points corresponding to the 18 trials of the two most extreme participants (BR
and MC) and the three input distributions (H, M, and L) have been projected as
illustrative rows in figure 6. Overall, the performance of BR, represented by the
direction-velocity histograms on the left, does not vary with the input in a
significant manner, whereas, on the opposite side, MC has large correspondent
changes with the input. Further, the histograms for the target input and these two
participants show two distinct ways in which the tracking performance of a
participant is influenced by the input difficulty level. The individual distribution
patterns are very characteristic. For BR, the three distribution patterns present
changes that are not consistent with the corresponding input distribution, i.e.
whatever the input, BR mainly uses up-down movement with slow speeds. At the
opposite, MC shows distribution patterns that are close to the input patterns in
both speed and direction.
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Figure 5. Overall direction-velocity histograms for three different individuals in comparison
with the input, at top of figure.

5. Discussion

The findings from the present study warrant discussion from both the behavioural
and the statistical points of view. The most striking result from the behavioural
perspective is the high wvariability among the response patterns of individual
participants, despite having received comparative training and identical inputs on all
trials. Since the input trajectories were the same for each participant, we have
considered that an ensemble distribution computed over the nine trial periods (when
integrating over the dependent variable) of a given operator is an individual
characteristic. The clearest difference in the response distributions was in the degree
that participants tracked along the vertical axis and, specifically, was manifested as
different relative time spent executing up-slow movements and down-slow move-
ments, respectively, shown as combinations 3 s and 7 s, on figure 1 (¢). Therefore,
two salient individual behaviour characteristics are implicated by these results. The
first corresponds to participants who mainly use up-down movement with low
velocity while the second corresponds to participants who employed a more
comprehensive set of direction-velocity combinations. This represents an initial
differentiation between individuals’ continued tracking performance.

The first category of behavioural response can mainly be accounted for primarily
by the physiology of the joint mechanism involved, specifically wrist dynamical limits
and second, only by decision-making behaviour. To explicate this theory let us
assume that a position mismatch signal is sensed by the visual system and fed back to
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Figure 6. Direction-velocity histograms obtained for the three input levels for the two most
extreme individuals, BR and MC.

the movement-production system (Johnson and Phatak 1990). The strategy used to
null the error consists of first applying slow velocity vertical movements. However,
when the adjustment speed does not compensate to match the target’s trajectory, the
operator does not have enough time to match both X and Y signals. The preference
to perform first the ¥ movement rather than the X movement can be explained by
the asymmetry between push-pull and left-right rotational movements. Moreover,
the much higher frequency of upward vertical combinations suggests that the push
exertion is preferred to a pull motion. Thus, the dynamical limits of the wrist and/or
the forearm constrain movement velocity regardless of target velocity; this behaviour
is summarized on figure 7 (a). The second individual behavioural characteristic
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Figure 7. Theoretical structure for the basis of encapsulating observed individual differences.

indicated by these data, in contrast to the first, corresponds to individuals who were
free of directional and speed limitation while tracking. As illustrated in figure 7 (b),
by utilizing a wider range of direction-velocity possibilities, these individuals
achieved better accuracy due to a higher limit in tracking capability. Velocity-based
accounts of individual differences have also been related previously, but no
preferential direction has been demonstrated in such studies. Given the novelty of
our findings, independent replication is needed to ensure that certain local
conditions, e.g. the sample of participants recruited, the specific input device
employed, do not exert distortional effects on the respective tracking response.

From the statistical perspective, the present study demonstrated a procedure
that, first, describes individual motor control behaviour and, second, facilitates the
comparison of the obtained idiographic behavioural characteristics. Statistical
differences between individual performances are better served by a confirmatory
method such as ANOVA and are commonly assessed using data from the transfer
functions for the X and Y components of the inputs and responses. Descriptive
output from a CFA is generally in the form of a correspondence map. In regard to
the present study, this map relates for each individual both the accuracy of
performance and the ensemble of motor behaviours that comprise the underlying
strategies used to track the target. Therefore, CFA is a means for uncovering
different tracking strategies utilized across individuals. This information may be
derived from the correspondence map by studying the relative position of profiles
corresponding to an individual’s output behaviour (both the mean or on a per trial
basis), the input behaviour, and the eight direction-velocity combinations. Large
distances between these points are then indicative of substantial differences in
tracking behaviour.

More particularly, this procedure offers a unique contribution to the assessment
of individual differences over and beyond that of more traditional methods such as
analysis of the root mean square (RMS), transfer functions, or other input-output
parameter of the behaviour output. Comparatively, the disadvantage of using these
other methods is that the intrinsic behavioural properties of the operators cannot be
distinguished. The RMS and RMSE (root mean square error) are time-averaged
values and are primarily suited to describe the accuracy of the operator’s responses.
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While there may be significant differences in RMSE between participants, such a
measure does not include speed and directional information. Therefore RMSE is not
well suited to distinguishing behavioural properties, especially for distributions of
tracking behaviour with more than one dimension. RMSE does not account for the
motions comprising participant BR’s tracking behaviour and, therefore, does not
relate this participant’s reliance on vertical control movements with low velocity that
occurred regardless of the input behaviour. While the transfer function or some
other parameter that relates input and output (i.e. time constants and gains, or
traditional parameters) may provide information about directional dominance,
analysis performed separately on the X and Y axes does not facilitate the
identification and characterization of specific tracking strategies or response patterns
at the level attained via CFA. For example, the information contained by the left-
reclined pattern depicted by the direction-velocity histogram of figure 5 (MC, High),
describes the frequencies which each direction and velocity possibility were utilized
and is far more meaningful than an overall rating of accuracy or directional
dominance.

In summary, to uncover and highlight inter- and intra-individual differences
from this multivariate characterization, a powerful multidimensional, exploratory
analysis was conducted. As required by the CFA method, the otherwise continuous
tracking behaviour was discretized into categorical variables. The CFA applied to
these data uses the chi-squared metric that is suitable for examining frequency data.
The distinction between using a parametric or non-parametric approach was not the
primary reason why CFA was used. Rather, with each trial being characterized by
an empirical histogram with 24 categories, the problem devolves to having to
indicate from which categories those differences originate and to identify the
influence of individual factors and input factors on these more discriminating
categorizations. Generally speaking, CFA, as opposed to more global techniques, is
not based on the assumption that inter-individual differences do not exist and that
only one variable is sufficient to describe individual behaviour. From this descriptive
and multidimensional approach, classes of individual behaviour and response to
increasing difficulty input were represented. The obtained influence models
constitute a description that could be used for future simulation procedures. The
distinction made by this research between the individuals who use primarily low
velocity vertical movements and individuals who use a full range of directions and
velocities when tracking has implications for those designing control and display
devices for use in tasks requiring accurate hand driven control. Instances of
tracking-related displays in systems where accurate control is critical are those found
in many forms of surgery, targeting systems of combat aircraft, as well as the control
of ground and water-based vehicles. Knowledge about the individual differences
uncovered by the present study may benefit both the selection and training of users
of these systems. A simple test based on the procedures in the present work can be
used to discriminate between the two types of individuals. Those who are
determined to possess the individual characteristic whereby a more compressive
dynamic range of motor behaviour is employed would be the most accurate trackers
and most capable to deal with a wide array of input behaviour. Individuals who
demonstrate poor tracking ability and who correspond with the individual
characteristics associated with dominant use of slow, vertical movements, may
respond more effectively to a training regime that focuses on deficiencies in these
specific aspects of tracking control.
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